matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra SonstigesEbene
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Lineare Algebra Sonstiges" - Ebene
Ebene < Sonstiges < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ebene: Tipp
Status: (Frage) beantwortet Status 
Datum: 21:31 Di 16.12.2008
Autor: juel

Aufgabe
Warum ist  [mm] \vektor{\vektor{x \\ y \\ z} - \vektor{x_{0} \\ y_{0} \\ z_{0}}} [/mm] * [mm] \vec{n} [/mm] = 0    die Gleichung einer Ebene durch den Punkt  [mm] (x_{0},y_{0},z_{0}) [/mm]  mit dem Normalvektor [mm] \vec{n}? [/mm]

hallo

alle Normalvektoren sind zueinander parallel und der Ebene bzw. Geraden senkrecht. Deshalb   [mm] \vec{n} \* [/mm] e = 0  bzw.  [mm] \vec{n} \* \vec{v} [/mm] = 0

ich weiß aber leider nicht wie ich es anhand einer Berechnung zeigen soll.

        
Bezug
Ebene: Antwort
Status: (Antwort) fertig Status 
Datum: 21:38 Di 16.12.2008
Autor: MontBlanc

Hi,

> Warum ist  [mm]\vektor{\vektor{x \\ y \\ z} - \vektor{x_{0} \\ y_{0} \\ z_{0}}}[/mm]
> * [mm]\vec{n}[/mm] = 0    die Gleichung einer Ebene durch den Punkt  
> [mm](x_{0},y_{0},z_{0}[/mm]  mit dem Normalvektor [mm]\vec{a}?[/mm]
>  hallo
>  
> alle Normalvektoren sind zueinander parallel und der Ebene
> bzw. Geraden senkrecht. Deshalb   [mm]\vec{n} \*[/mm] e = 0  bzw.  
> [mm]\vec{n} \* \vec{v}[/mm] = 0

Ich nehme an [mm] \overrightarrow{e} [/mm] und [mm] \overrightarrow{v} [/mm] sind die Richtungsvektoren der Gerade / Ebene ?

> ich weiß aber leider nicht wie ich es anhand einer
> Berechnung zeigen soll.

Würde ich über die koordinatenfreie Darstellung des Skalarproduktes zeigen, es ist definiert als: [mm] \overrightarrow{n}\*\overrightarrow{v}=|\overrightarrow{n}|*|\overrightarrow{v}|*cos(\phi) [/mm]

Wobei [mm] \Phi [/mm] der eingeschlossene Winkel ist, da der cos(90°)=0 hast du eine Multiplikation mit 0 und daher ist auch das Skalarprodukt dann null. Solltest du die koordiantenfreie Darstellung noch nicht gemacht haben, kannst du sie dir herleiten über den Kosinussatz , das ist hier beschrieben:

[]Klick mich

(falls du einen TR hast kannst du wahlweise je nach belieben Radian oder Degree einstellen, im ersteren Fall ist der Winkel dann [mm] \bruch{\pi}{2} [/mm] im letzten wirklich 90°)


Ich hoffe, dass ich Dir helfen konnte,

lg

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]