matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare AbbildungenEbene
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Lineare Abbildungen" - Ebene
Ebene < Abbildungen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ebene: Aufgabe 3
Status: (Frage) beantwortet Status 
Datum: 09:33 Mi 26.11.2008
Autor: ohlala

Aufgabe
3. Wir betrachten die Ebene E in [mm] R^3, [/mm] gegeben durch [mm] x_{2}= x_{3}, [/mm] und die lineare Abbildung
F : [mm] R^3 \rightarrow R^3, [/mm] die jedes x [mm] \in R^3 [/mm] orthogonal auf E projiziert.
a) Durch welche Matrix A wird F beschrieben?
b) Bestimmen Sie KernA und dim(KernA).
c) Bestimmen Sie BildA und dim(BildA).

Normalerweise hat mein z.B.: x= [mm] \begin{pmatrix} x_{1} \\ x_{2} \end{pmatrix} \rightarrow x'=\begin{pmatrix} x_{2} \\ -x_{1} \end{pmatrix}. [/mm]

Also ich weiß, dass x= [mm] \begin{pmatrix} x_{1} \\ x_{2} \\ x_{3} \end{pmatrix} [/mm] und da [mm] x_{2}= x_{3} [/mm] ist hab ich dann:
[mm] x=\begin{pmatrix} x_{1} \\ x_{2} \\ x_{2} \end{pmatrix}. [/mm]
Ich weiß jetzt bloß nicht was mein x' ist.
Wäre super wenn mir jemand helfen könnte, danke und lg


        
Bezug
Ebene: Antwort
Status: (Antwort) fertig Status 
Datum: 09:46 Mi 26.11.2008
Autor: angela.h.b.


> 3. Wir betrachten die Ebene E in [mm]R^3,[/mm] gegeben durch [mm]x_{2}= x_{3},[/mm]
> und die lineare Abbildung
>  F : [mm]R^3 \rightarrow R^3,[/mm] die jedes x [mm]\in R^3[/mm] orthogonal
> auf E projiziert.
>  a) Durch welche Matrix A wird F beschrieben?
>  b) Bestimmen Sie KernA und dim(KernA).
>  c) Bestimmen Sie BildA und dim(BildA).
>  

Hallo,

Du kennst ja den Normalenvektor n der Ebene.

Finde zwei linear unabhängige, dazu senkrechte Vektoren [mm] v_1, v_2. [/mm] Damit hast Du eine dem Problem angepaßte Basis des [mm] \IR^3. [/mm]

Du kennst dann [mm] F(v_1), [/mm] F( [mm] v_2), [/mm] F(n)  und kannst Dir daraus das Bild von F auf den Standardeinheitsvektoren berechnen und die matrix bzgl der Standardeinheitsvektoren aufstellen.

Kern und Bild der orthogonalen Projektion kann man eigentlich gleich so hinschreiben wenn man die Abbildung begriffen hat.

Welche Vektoren verschwinden? Was ist das Bild?

Gruß v. Angela

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]