matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenmathematische StatistikEX und Var(x) Normalverteilt
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "mathematische Statistik" - EX und Var(x) Normalverteilt
EX und Var(x) Normalverteilt < math. Statistik < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "mathematische Statistik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

EX und Var(x) Normalverteilt: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 01:13 Sa 26.01.2008
Autor: canuma

Aufgabe
Für i=1,2,...,1000 seien die Zufallsgrößen
[mm] X_{i}\sim [/mm] N(0,1) und [mm] Y_{i}\sim [/mm] N(3,4) unabhänig.

Bestimmen Sie EZ und Var(Z) zum Merkmal Z [mm] =3X_{i}+ 5Y_{i}. [/mm]

EX=0 , EY=3 -> EZ=15

Var(Z)=E(Z-EZ)²=E(3X-5Y-15)²
      =E(9X²+30XY-90X+25Y²-150Y+255)
      =E(25Y²-150Y+255)
      =0

Als Ergebnis soll angeblich Var(Z)=109 raus kommen.
Wo ist mein Fehler oder ist Var(Z)=0 richtig?



Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
EX und Var(x) Normalverteilt: Antwort
Status: (Antwort) fertig Status 
Datum: 01:26 Sa 26.01.2008
Autor: luis52

Moin canuma,

zunaechst ein [willkommenmr]

So richtig verstehe ich deine Rechnung nicht, aber da [mm] $X_i$ [/mm] und Y
unabhaengig sind, kannst du so rechnen:


[mm] $\operatorname{Var}[Z] =\operatorname{Var}[3X_{i}+ 5Y]=\operatorname{Var}[3X_{i}]+\operatorname{Var}[5Y]=9\operatorname{Var}[X_{i}]+25\operatorname{Var}[Y]=109$. [/mm]

vg Luis

PS: Darf ich einmal fragen, wie du darauf gekommen bist, deine Frage hier
im Matheraum zu stellen? Gooegle, Empfehlung,...            

Bezug
                
Bezug
EX und Var(x) Normalverteilt: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 01:42 Sa 26.01.2008
Autor: canuma

Verdammt, vielen dank für deine Hilfe.

Könntest du mir auch sagen warum meine Rechnung dann nicht stimmt?

Var(Z)=E(Z-EZ)²                           ist ja die Def.
      =E(3X-5Y-15)²                       ist die Def. von Z
                                          und EZ
      =E(9X²+30XY-90X+25Y²-150Y+255)      aufgelöst
      =9EX+30EX*EY-....+255               EX=0 setztn
      =25EY²-150EY+255                    EY=3 setzen
      =0


Diese Seite hab ich durch googel gefunden.

Bezug
                        
Bezug
EX und Var(x) Normalverteilt: Antwort
Status: (Antwort) fertig Status 
Datum: 09:12 Sa 26.01.2008
Autor: luis52

Moin ,

> Könntest du mir auch sagen warum meine Rechnung dann nicht
> stimmt?

>

> Var(Z)=E(Z-EZ)²                           ist ja die Def.
>        =E(3X-5Y-15)²                       ist die Def. von
> Z
>                                            und EZ
>        =E(9X²+30XY-90X+25Y²-150Y+255)      aufgelöst
>        =9EX+30EX*EY-....+255               EX=0 setztn
>        =25EY²-150EY+255                    EY=3 setzen

Diese Gleichung ist nicht koscher.  Ich rechne so:

[mm] \begin{matrix} \operatorname{E}[9X²+30XY-90X+25Y²-150Y+255] &=&9\operatorname{E}[X²]+30\operatorname{E}[XY]-90\operatorname{E}[X]+25\operatorname{E}[Y²]-150\operatorname{E}[Y]+255] \\ &=&9\times1+30\times0-90\times0+25\times13-150\times3+255\\ &=&109\,. \end{matrix} [/mm]

vg Luis

Bezug
                                
Bezug
EX und Var(x) Normalverteilt: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:41 Sa 26.01.2008
Autor: canuma

Also ist E[X]²=1, wenn E[X]=0, da muss ich wo nocheinmal die Rechenregeln studieren.

Danke du hast mir sehr geholfen. Bin schon fast verzweifelt an der Aufgabe.

Bezug
                                        
Bezug
EX und Var(x) Normalverteilt: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:39 Sa 26.01.2008
Autor: luis52


> Also ist E[X]²=1, wenn E[X]=0, da muss ich wo nocheinmal
> die Rechenregeln studieren.

Das geht flott:  [mm] $\operatorname{Var}[X]=\operatorname{E}[X^2]-\operatorname{E}[X]^2$... [/mm]  


vg Luis    

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "mathematische Statistik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]