matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Lineare AlgebraEW und EV
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Uni-Lineare Algebra" - EW und EV
EW und EV < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

EW und EV: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:06 So 07.05.2006
Autor: AriR

(frage zuvor nicht gestellt)

Hey Leute, ich hab eine etwas allgemeinere frage zu EV und EW und zwar:
Sei A eine Matrix, v ein Vektor, [mm] \lambda\in [/mm] K

wenn man EV und EW berrechnen möchte, handelt sich doch eigentlich alles um folgendes LGS:

[mm] (A-\lambda*E)*v=0, [/mm] wobei dann hier [mm] \lambda [/mm] der EW wäre und v der EV


jetzt berrechnet man ja normalerweise zunächst die [mm] det(A-\lambda*E) [/mm] um zu wissen für welche [mm] \lambda [/mm] das LGS mehr als eine Lösung hat.

dann setzt man die berrechneten werte für [mm] \lambda [/mm] ein und ermittelt danach die EV.

Kann es denn hierbei vorkommen, dass man für [mm] \lambda [/mm] einen wert rausbekommt, den in die Matrix einsetzt und das LGS dann nicht mehr lösbar ist?

ich würde sagen nein, da in einem homogenen LGS der Rang der Matrix nie kleiner ist als der Rand der erweiterten Koeffizientenmatrix oder?

wäre über eine Antwort sehr erfreut. Gruß Ari

        
Bezug
EW und EV: Antwort
Status: (Antwort) fertig Status 
Datum: 16:02 So 07.05.2006
Autor: baskolii

Ja, tatsächlich ist bei einem homogenen GLS der Rang der Matrix immer gleich dem Rang der erweiterten Koeffizientenmatrix. Das heißt ein homogenes GLS hat entweder genau eine Lösung oder unendlich viele.
Ist also [mm] det(A-\lambda*E)=0 [/mm] so hat das GLS [mm] (A-\lambda*E)*v=0 [/mm] unendlich viele Lösungen.

Bezug
                
Bezug
EW und EV: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 05:12 Mo 08.05.2006
Autor: AriR

jo vielen dank :)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]