matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenExp- und Log-FunktionenE-Funktion
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Exp- und Log-Funktionen" - E-Funktion
E-Funktion < Exp- und Log-Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

E-Funktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:24 Sa 05.12.2009
Autor: coucou

Aufgabe
Gegeben ist der Graph K der natürlichen Exponentialfunktion. In einem Punkt (a/ f(a)) wird die Tangente an K gelegt. Berechnen SIe die Koordinaten des Schnittpunktes dieser Tangente mit der x-Achse. Wie kann man also in einem gegebenen Punkt die Tangente konstruieren?

Hallo!

Erstmal würde ich gerne wissen, ob meine Rechnung stimmt.

f´(a) * (x-a) * f(a)
[mm] e^a [/mm] * (x-a) + [mm] e^a [/mm]

lässt man das dann so stehen?

so dann die Nullstellen

[mm] e^a [/mm] * (x-a) + [mm] e^a= [/mm] 0

[mm] e^a [/mm] = 0
L={ }
x-a + [mm] e^a [/mm] = 0
x= [mm] -e^a [/mm] + a

So, und falls das stimmt, was soll man denn dann bei der letzten Frage schreiben?Dass man sich diesen Punkt (,der ja allg. ist) als Nullstelle nehmen kann und die Tangente an den Graphen konstruieren?


        
Bezug
E-Funktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:30 Sa 05.12.2009
Autor: coucou

Oder löst man das so auf

[mm] xe^a -ae^a+ e^a [/mm]
[mm] e^a [/mm] * (x-a+1)
x= -1+a

Bezug
                
Bezug
E-Funktion: Antwort
Status: (Antwort) fertig Status 
Datum: 15:40 Sa 05.12.2009
Autor: leduart

Hallo
Dein erstes Resultat war natürlich falsch .as zweite dann richtig.
Wenn du jetzt den Graphen von [mm] e^x [/mm] hast, wie würdest du die Tangente z. Bsp bei x=2 oder x=-1 zeichnen?
Gruss leduart

Bezug
                        
Bezug
E-Funktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:46 Sa 05.12.2009
Autor: coucou

Naja, so, wie ich das schon in meinem ersten Thread gepostet hab. Einfahc einsetzen, sodass man die Nullstelle hat und dann die Tangente an den Graphen konstruieren?

Bezug
                                
Bezug
E-Funktion: andersrum
Status: (Antwort) fertig Status 
Datum: 21:31 Sa 05.12.2009
Autor: Loddar

Hallo coucou!


Nein, andersum ... erst musst Du die entsprechende Tangente (= Geradengleichung) ermitteln. Und dann die Nullstelle dieser Geraden bestimmen.


Gruß
Loddar


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]