matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenExp- und Log-FunktionenE-Funkiton und Logarithmen
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Exp- und Log-Funktionen" - E-Funkiton und Logarithmen
E-Funkiton und Logarithmen < Exp- und Log-Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

E-Funkiton und Logarithmen: e-Funktion und ln
Status: (Frage) beantwortet Status 
Datum: 16:00 Di 12.09.2006
Autor: hoeffa

Aufgabe
Vereinfachen sie den Term
a) e^(ln4)       c) [mm] e^{-\bruch{1}{2}*ln*4} [/mm]
b) e^(-ln*x)    d) e^(-3*ln [mm] \wurzel{3}) [/mm]

Hallo,

ich schreibe bald eine Mathe LK klausur. unter anderem müssen wir diese Terme vereinfachen. Allerdings versteh ich nicht wie man das machen muss.
bei a) ist mir klar das da 4 rauskommt. aber bei komplizeriteren sitz ich da und weiss nicht weiter. und dann gibts noch die umgekehrten fälle wo dann da steht :" ln*e^(x/2)

ne antwort oder hilfe wäre super

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
E-Funkiton und Logarithmen: Antwort
Status: (Antwort) fertig Status 
Datum: 16:49 Di 12.09.2006
Autor: PStefan

Hi,

[willkommenmr]

also, wie du gesagt hast:
(a) 4

(b) [mm] \bruch{1}{x} [/mm]
Dies funktionierte nun durch Logarithmusgesetz:
[mm] lg(u^{k})=k*lg(u) [/mm]
weil du ja hattest
[mm] e^{ln(x^{-1})} [/mm]

(c) ebenfalls durch dieselbe Regel
[mm] \bruch{1}{2} [/mm]

(d) ebenfalls
[mm] \bruch{1}{3*\wurzel{3}} [/mm]

Gruß
Stefan


Bezug
        
Bezug
E-Funkiton und Logarithmen: wofür steht e?
Status: (Frage) beantwortet Status 
Datum: 18:27 Di 12.09.2006
Autor: hoeffa

ja okay das hab ich so halb verstanden....was ich aber nicht versteh: warum steht da das e. das kann man sich doch mehr oder weniger wegdenken.

Also ich muss einfach alle potenzgesetze anewenden und den so vereinfachen. Na super das genau is mein schwachpunkt in mathe ;)

Bezug
                
Bezug
E-Funkiton und Logarithmen: Antwort
Status: (Antwort) fertig Status 
Datum: 20:43 Di 12.09.2006
Autor: PStefan

Hi nochmals,

> ja okay das hab ich so halb verstanden....was ich aber
> nicht versteh: warum steht da das e. das kann man sich doch
> mehr oder weniger wegdenken.

haha, du bist lustig ;-) *gg*
So lautet die Aufgabenstellung, ich weiß auch nicht, wem solche Beispiele einfallen; oder meinst du was e ist?
e ist die eulersche Zahl mit ungefähr 2,71828
Der natürliche Logarithmus basiert auf e, verstehst du?
Am besten ist es in Wikipedia nachzuschauen, da gibts eine vollständige Definition mit
[mm] e=\limes_{n\rightarrow\infty}(1+\bruch{1}{n})^{n} [/mm]

also wegdenken darf man es nicht!

Gruß
Stefan

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]