matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenMathe Klassen 8-10Dummiefrage: Auflösen nach x
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Mathe Klassen 8-10" - Dummiefrage: Auflösen nach x
Dummiefrage: Auflösen nach x < Klassen 8-10 < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Dummiefrage: Auflösen nach x: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:43 So 25.02.2007
Autor: belimo

Aufgabe
Lösen Sie nach x auf:

a) [mm] \bruch{x}{a}-1=x-a [/mm]

Hallo Leute

Mein Taschenrechner meldet mir x=a, und das macht ja auch Sinn, wenn ich das einsetze. Ich habe nun aber obige Gleichung schon auf jede Art umgeformt, aber ich komme nicht auf x=a ;-) Habt ihr mir einen Tipp? Danke schon im Voraus!

Gruss belimo

        
Bezug
Dummiefrage: Auflösen nach x: Antwort
Status: (Antwort) fertig Status 
Datum: 16:54 So 25.02.2007
Autor: Eddie

Hallo,

du musst x und a rüberbringen


x/a - 1 -x+a = 0         ( 1 kann man auch als a/a schreiben)

x/a - a/a - x + a = 0

a-x/a - x +a = 0             ( a = a/a)

x/a - x = 0         ( x = X/1)

x/a - x/1 = 0             ( über Kreuz multiplizieren x*1- a*x)

ax-x = 0  
x( a-x) = 0       (geteilt durch x)

a-x = 0 ------>>>>> a=x


Bezug
                
Bezug
Dummiefrage: Auflösen nach x: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:56 So 25.02.2007
Autor: belimo

Sensationell, vielen Dank!

Bezug
                        
Bezug
Dummiefrage: Auflösen nach x: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:11 So 25.02.2007
Autor: belimo

Hm, ich habe mir das ganze jetzt mal auf Papier geschrieben, und da verstehe ich einen Schritt den du gemacht hast nicht ganz.

Du schreibst:
[mm] \bruch{x}{a}-\bruch{a}{a}-x+a=0 [/mm]
[mm] \bruch{a-x}{a}-x+a=0 [/mm]

Nach mir gibt das aber nicht a-x, sondern x-a, also:
[mm] \bruch{x-a}{a}-x+a=0 [/mm]

Und dein nächster Schritt ist mir ebenfalls unklar, du schreibst:
[mm] \bruch{a-x}{a}-x+a=0 [/mm]
[mm] \bruch{x}{a}-x=0, [/mm] wobei du anscheinend das a mit [mm] \bruch{a}{a} [/mm] ersetzt. Das kann man doch nicht machen. 1 ist zwar gleich [mm] \bruch{1}{1}, [/mm] aber 2 ist nicht gleich [mm] \bruch{2}{2} [/mm]

Trotzdem bin ich überrascht, dass dein Resultat stimmt ;-)



Bezug
                                
Bezug
Dummiefrage: Auflösen nach x: Antwort
Status: (Antwort) fertig Status 
Datum: 17:17 So 25.02.2007
Autor: Steffi21

Hallo,

Eddie hat leider einige Fehler!!

[mm] \bruch{x}{a}-1=x-a [/mm]

[mm] \bruch{x}{a}-x=1-a [/mm]

[mm] \bruch{x}{a}-\bruch{xa}{a}=1-a [/mm]

[mm] \bruch{x-xa}{a}=1-a [/mm]

x-xa=a(1-a)

x(1-a)=a(1-a)

[mm] x=\bruch{a(1-a)}{(1-a)} [/mm] für [mm] a\not=1 [/mm]

x=a

Steffi

Bezug
                                        
Bezug
Dummiefrage: Auflösen nach x: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:22 So 25.02.2007
Autor: belimo

Super, das kann ich nun ohne Probleme nachvollziehen, danke [lichtaufgegangen]
Bezug
                                                
Bezug
Dummiefrage: Auflösen nach x: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:34 So 25.02.2007
Autor: Eddie

Tut mir leid anscheinend habe ich ein paar Zahlen verdreht. Auf dem Papier ist es immer einfach als am PC.



Bezug
                                        
Bezug
Dummiefrage: Auflösen nach x: Ergänzung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:13 So 25.02.2007
Autor: Zwerglein

Hi, Steffi,

> [mm]\bruch{x}{a}-1=x-a[/mm]
>  
> [mm]\bruch{x}{a}-x=1-a[/mm]
>  
> [mm]\bruch{x}{a}-\bruch{xa}{a}=1-a[/mm]
>  
> [mm]\bruch{x-xa}{a}=1-a[/mm]
>  
> x-xa=a(1-a)
>  
> x(1-a)=a(1-a)
>  
> [mm]x=\bruch{a(1-a)}{(1-a)}[/mm] für [mm]a\not=1[/mm]
>  
> x=a

Aber nicht vergessen:
Für a = 1 ist die Lösungsmenge: L = [mm] \IR. [/mm]
(Für JEDES x aus [mm] \IR [/mm] ergibt sich dann eine wahre Aussage!)

mfG!
Zwerglein

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]