matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-StochastikDuell mit Schützen, W-keit
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Uni-Stochastik" - Duell mit Schützen, W-keit
Duell mit Schützen, W-keit < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Duell mit Schützen, W-keit: Aufgabenhilfe
Status: (Frage) beantwortet Status 
Datum: 22:28 Di 26.10.2010
Autor: Ultio

Aufgabe
Zwei Schützen treten zum Duell an. Dabei schießen die Kontrahenten gleichzeitig
aufeinander. Wenn beide Schützen den Schusswechsel überleben, ist ein weiterer notwendig.
Das Duell wird fortgesetzt, bis eine Entscheidung gefallen ist. Dabei trit t Schütze A mit
Wahrscheinlichkeit p und Schütze B mit Wahrscheinlichkeit q. Mit welcher Wahrscheinlichkeit
überlebt Schütze A das Duell, mit welcher Wahrscheinlichkeit überlebt Schütze B?

Hallo Matheraumler,

Könnte jemand bitte meine Lösung kontrollieren und sagen, ob das reicht.

Also:
Ereignisse:
keiner trifft (0,0) : (1-p)(1-q)
A trifft         (1,0) : p * (1-q)
B trifft         (0,1) : (1-p) * q
beide treffen (1,1) : p * q

Überlebenwahrscheinlichkeit von A = P(Aü)
P(Aü) = P(0,0)* P(Aü) + P(1,0) - P(0,1) - P(1,1)
[mm] \gdw [/mm] P(Aü) = [mm] \bruch{P(1,0) - P(0,1) - P(1,1)}{1 - P(0,0)} [/mm]
[mm] \Rightarrow [/mm]  P(Aü) = [mm] \bruch{p - q - pq}{p+q-pq} [/mm]
das ist insofern sinnvoll:
0 [mm] \le \bruch{p - q - pq}{p+q-pq} \le [/mm] 1

Analog verfährt man bei der Überlebenswahrscheinlichkeit von B P(Bü) und erhält:
P(Bü) = [mm] \bruch{q - p - pq}{q+p-pq} [/mm]
das ist insofern sinnvoll:
0 [mm] \le \bruch{q - p - pq}{q+p-pq} \le [/mm] 1

Ist damit die Aufgabe erledigt?

Vielen Dank.
Gruß
Felix



        
Bezug
Duell mit Schützen, W-keit: Antwort
Status: (Antwort) fertig Status 
Datum: 15:54 Sa 30.04.2022
Autor: Hannes00

Moin, stell' dir vor: Im Jahre 2022 werden Lehrämter immer noch mit dieser Aufgabe gequält... -.- Das, was hier von mir steht, gab ganze 2 von 2 Punkte. Also fleißig durchdenken und dann abschreiben XD.

Omega = [mm] ({0,1})^{(n)}, [/mm] wobei 0 = nicht getroffen, 1 = getroffen. ##Unser Übungsleiter hat aber gesagt, dass "hoch n" nicht stimmt... naja, muss er wissen.
W =(kleines [mm] omega_1, [/mm] kleines [mm] omega_2), [/mm] wobei [mm] omega_1 [/mm] = Schuss des Schütze 1 und [mm] omeaga_2 [/mm] = Schuss von B ist.
Omega = {(0,0),(1,0),(0,1),(1,1)}
P({(0,0)}) = (1-q)*(1-p) = 1-p-q+pq
P({(1,0)}) = p* (1-q) = p-pq
P({(0,1)}) = q*(1-p) = q-pq
P({(1,1)}) = p*q = pq

Wahrscheinlichkeit, dass A überlebt?
P(A) = P(1,0)+ P(0,0)* P(A) | * [mm] \bruch{1}{P(A)} [/mm]
[mm] \bruch{P(A)}{P(A)} [/mm] = [mm] \bruch{P(1,0)}{P(A)} [/mm] + P(0,0) |-P(0,0)
1- P(0,0) = [mm] \bruch{P(1,0)}{P(A} [/mm]
[mm] \bruch{(1-P(0,0))}{P(1,0)} [/mm] = [mm] \bruch{1}{P(A)} [/mm]
P(A) = [mm] \bruch{P(1,0)}{1-P(0,0)} [/mm]
-> P(A) = [mm] \bruch{p-qp}{1-1+p+q-pq} [/mm] = [mm] \bruch{p-pq}{p+q-pq} [/mm]    

Wahrscheinlichkeit, dass B überlebt?
P(B) = P(0,1) + P(0,0) * P(B)
= ...  (analog zu A)
-> P(B) = [mm] \bruch{q-pq}{p+q-pq} [/mm]

Bezug
        
Bezug
Duell mit Schützen, W-keit: Antwort
Status: (Antwort) fertig Status 
Datum: 22:51 Di 26.10.2010
Autor: Sax

Hi,

> das ist insofern sinnvoll:
> 0 $ [mm] \le \bruch{p - q - pq}{p+q-pq} \le [/mm] $ 1

Das ist es doch gerade nicht, wenn z.B. p = q = 1  ist.

Der Fehler liegt hier :

> P(Aü) = P(0,0)* P(Aü) + P(1,0) - P(0,1) - P(1,1)

die letzten beiden Simmanden sind zu streichen.

Bei Division beachten :  Nicht durch 0 teilen !

Gruß Sax.



Bezug
                
Bezug
Duell mit Schützen, W-keit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 07:18 Mi 27.10.2010
Autor: Ultio

Hallo, danke dir für die Antwort.
D.h. P(Aü) = P(0,0) P(Aü) + P(1,0) = [mm] \bruch{p* (1-q)}{ 1 - (1-q)(1-p)} [/mm]
= [mm] \bruch{p - pq }{ 1 - 1+p+q-pq)} [/mm] =  [mm] \bruch{p - pq }{p+q-pq)} [/mm]
das ist aber nicht kleiner 0 und größer 1

Analog mit B:
P(A) =  =  [mm] \bruch{q - pq }{q+p-pq)} [/mm]

Richtig?

Danke dir nochmal.
Gruß
Felix

Bezug
                        
Bezug
Duell mit Schützen, W-keit: Antwort
Status: (Antwort) fertig Status 
Datum: 14:59 Mi 27.10.2010
Autor: Sax

ja, richtig, falls der Nenner nicht 0 ist !

Gruß Sax.

Bezug
                                
Bezug
Duell mit Schützen, W-keit: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:51 Mi 27.10.2010
Autor: Ultio

Danke vielmals.
Gruß
Felix

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]