matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenStochastikDringende Hilfe mit Borelmenge
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Stochastik" - Dringende Hilfe mit Borelmenge
Dringende Hilfe mit Borelmenge < Stochastik < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Dringende Hilfe mit Borelmenge: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:12 So 31.10.2010
Autor: m0ppel

Aufgabe
Beweisen Sie, dass
[mm] \IQ \cup \{x| sinx < 0.3333\} \cup \{x |e^{x} \in \IQ\} [/mm]  Borelmenge in [mm] \IR [/mm] ist.

Ich bin  mir noch sehr unsicher, wie ich eine Borelmenge zu verstehen habe.
und vor allem, welche Kriterien muss ich nachweisen, um zu zeigen, dass mir eine Borelmenge vorliegt?
Ich weiß aus meiner Vorlesung, dass [mm] \IQ [/mm] eine Borelmenge ist. Da ich weiß, dass zwischen Borelmengen alle Mengenoperationen erlaubt sind und dennoch eine die Eigenschaften der Borelmenge erhalten bleiben, muss ich nur nachweisen, dass [mm] \{x| sinx < 0.3333\} [/mm] und [mm] \{x |e^{x} \not\in \IQ\} [/mm] ebenfalls Borelmengen sind.

Aber wie weiß ich das denn jetzt genau nach?
Ich weiß, dass [mm] \{x| sinx < 0.3333\} [/mm] eine Vereinigung mehrerer offener Mengen ist auf Grund der Eigenschaft der Signus Funktion. Was muss ich jetzt noch dazu wissen?
Die gleichen Fragen gelten auch für [mm] \{x |e^{x} \not\in \IQ\}. [/mm]


Vielen Dank schon mal für die Hilfe! Lg

        
Bezug
Dringende Hilfe mit Borelmenge: Antwort
Status: (Antwort) fertig Status 
Datum: 23:23 So 31.10.2010
Autor: Gonozal_IX

Huhu,

kann es sein, dass du in der Aufgabenstellung ein \not vergessen hast?

nunja, dazu vorweg:

Ihr hattet bestimmt schon, dass für messbare Funktionen Mengen der Form [mm] $\{f(x) < c\}, \{f(x) \le c\}, \{f(x) = c\},\ldots$ [/mm] messbar ist, für alle [mm] c\in\IR. [/mm]

Überleg dir nun, dass die Funktionen $f(x) = [mm] \sin(x), [/mm] g(x) = [mm] e^x$ [/mm] Borel-meßbar sind.
Das geht recht einfach über eine fundamentale Eigenschaft beider Funktionen.

MFG,
Gono.

Bezug
                
Bezug
Dringende Hilfe mit Borelmenge: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:21 Mo 01.11.2010
Autor: m0ppel


Bezug
                
Bezug
Dringende Hilfe mit Borelmenge: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:22 Mo 01.11.2010
Autor: m0ppel

Danke schon mal für deine Antwort.
Ja hast recht, ich habe da ein not vergessen.
Hier noch mal richtig:
Zeige dass [mm]\IQ \cup \{x| sinx < 0.3333\} \cup \{x |e^{x} \not\in \IQ\}[/mm] eine Borelmenge ist.


Zu deinem Rest, ich weiß leider nicht, wann eine Funktion messbar ist.
Kannst du mir sagen, was ich da nachweisen muss? Ich habe leider erst in 3 Stunden Zeit mich weiter mit dieser Aufgabe zu beschäftigen. Und dann frag und denke ich noch mal genauer darüber nach.
lg

Bezug
                        
Bezug
Dringende Hilfe mit Borelmenge: Antwort
Status: (Antwort) fertig Status 
Datum: 11:36 Mo 01.11.2010
Autor: fred97


> Danke schon mal für deine Antwort.
>  Ja hast recht, ich habe da ein not vergessen.
> Hier noch mal richtig:
> Zeige dass [mm]\IQ \cup \{x| sinx < 0.3333\} \cup \{x |e^{x} \not\in \IQ\}[/mm]
> eine Borelmenge ist.
>  
> Zu deinem Rest, ich weiß leider nicht, wann eine Funktion
> messbar ist.


Mach Dich schlau !!


> Kannst du mir sagen, was ich da nachweisen muss? Ich habe
> leider erst in 3 Stunden Zeit mich weiter mit dieser
> Aufgabe zu beschäftigen. Und dann frag und denke ich noch
> mal genauer darüber nach.




Klar: [mm] \IQ [/mm] ist Borelmessbar.

Zur 2. Menge:

Das Intervall [mm] I:=(-\infty, [/mm] 0.3333) ist offen, also Borel-messbar.  f(x):=sin(x) ist stetig und somit messbar, damit ist

              [mm] $f^{-1}(I) [/mm]  Borel - messbar

Zur 3. Menge:

A:=  [mm] \IR [/mm] \ [mm] \IQ [/mm] ist Borel-messbar. [mm] g(x):=e^x [/mm] ist stetig und somit messbar,
damit ist

            [mm] $g^{-1}(A) [/mm]  Borel - messbar

>  lg


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]