matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegrationstheorieDreifachintegral
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Integrationstheorie" - Dreifachintegral
Dreifachintegral < Integrationstheorie < Maß/Integrat-Theorie < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integrationstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Dreifachintegral: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 23:11 Di 11.03.2008
Autor: user0009

Aufgabe
Man berechne das Volumen der Körper, die von den angegebenen Flächen begrenzt werden:

[mm] z=x^2+y^2, y=x^2, [/mm] 0<y<1, z=0

Ich habe folgendes probiert und möchte wissen, ob ich B richtig angenommen habe oder komplett falsch liege.

[mm] \integral_{B}^{}\integral_{}^{}\integral_{}^{}{ dx dy dz} [/mm]

[mm] B={(x,y,z,)eR^3| 0<= y<=1, 0<=x<=y, 0<=z<=x^2+y^2} [/mm]

--> [mm] \integral_{y=0}^{y=1}\integral_{x=0}^{x=y}\integral_{z=0}^{z=x^2+y^2}{ dx dy dz} [/mm]

Wenn ich bei B komplett falsch liege, wie komme ich auf das richtige B?

Danke user0009

        
Bezug
Dreifachintegral: Antwort
Status: (Antwort) fertig Status 
Datum: 00:26 Mi 12.03.2008
Autor: MatthiasKr

Hi,
> Man berechne das Volumen der Körper, die von den
> angegebenen Flächen begrenzt werden:
>  
> [mm]z=x^2+y^2, y=x^2,[/mm] 0<y<1, z=0
>  Ich habe folgendes probiert und möchte wissen, ob ich B
> richtig angenommen habe oder komplett falsch liege.
>  
> [mm]\integral_{B}^{}\integral_{}^{}\integral_{}^{}{ dx dy dz}[/mm]
>  
> [mm]B={(x,y,z,)eR^3| 0<= y<=1, 0<=x<=y, 0<=z<=x^2+y^2}[/mm]
>  
> -->
> [mm]\integral_{y=0}^{y=1}\integral_{x=0}^{x=y}\integral_{z=0}^{z=x^2+y^2}{ dx dy dz}[/mm]
>  

ich denke, dein ansatz stimmt bis auf dass x nicht bis $y$ sondern bis [mm] $\sqrt{y}$ [/mm] laufen muss (bis zur flaeche [mm] $y=x^2$). [/mm]

gruss
matthias

Bezug
                
Bezug
Dreifachintegral: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:06 Mi 12.03.2008
Autor: user0009

Bist du dir sicher, dass ich keine Polarkoordinaten verweden muss?
Denn wenn ich welche verwenden muss, dann ist mein Ansatz wohl falsch.

lg user0009

Bezug
                        
Bezug
Dreifachintegral: Antwort
Status: (Antwort) fertig Status 
Datum: 14:25 Do 13.03.2008
Autor: MathePower

Hallo user0009,

> Bist du dir sicher, dass ich keine Polarkoordinaten
> verweden muss?

Das Dreifachintegral bekommt man ganz ohne Polarkoordinaten heraus.

>  Denn wenn ich welche verwenden muss, dann ist mein Ansatz
> wohl falsch.
>  
> lg user0009

Gruß
MathePower

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integrationstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]