matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenKombinatorikDreierpasch
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Kombinatorik" - Dreierpasch
Dreierpasch < Kombinatorik < Stochastik < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Kombinatorik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Dreierpasch: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 01:52 So 22.10.2006
Autor: Huckleberry

Aufgabe
Wie groß ist die Wahrscheinlichkeit, bei einem Wurf von n 10-seitigen Würfeln mindestens drei gleiche Ergebnisse (mindestens einen Dreierpasch) zu bekommen?

Meine momentane Vermutung:

Man addiert die Anzahl der möglichen Dreierpaschs, Viererpaschs etc und subtrahiert davon die Anzahl der Dreierpaschs, Viererpaschs etc, die unter den dabei nicht betrachteten Würfeln vorkommen.
Zur Errechnung der Wahrscheinlichkeit teilt man diese Anzahl dann durch [mm] 10^n. [/mm]

Meine Formel zur Errechnung der 'günstigen' Möglichkeiten bisher:

[mm] \summe_{i=3}^{n} 10*9^{n-i}*\vektor{n\\ i} [/mm] - [mm] \summe_{j=1}^{n-3} 9*8^{n-3-j}*\vektor{n-3 \\ j} [/mm] - [mm] \summe_{k=1}^{n-6} 8*7^{n-6-k}*\vektor{n-6 \\ k}... [/mm]

Nun ist dies erstens nicht schön, und berücksichtigt zweitens auch noch nicht die Mehrlinge, die bei den nicht betrachteten Würfeln der weiteren Summanden der ersten Summenformel vorkommen (also bei den Summanden, die die Anzahl der Vierlinge etc betrachten).

Wie könnte man das noch einbinden? Und: gibt es eine insgesamt elegantere Lösung??

Vielen Dank!




Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Dreierpasch: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 03:28 So 22.10.2006
Autor: Huckleberry

Falls es weiterhilft:

Hier meine bisherigen Überlegungen im Detail:

Für 1 und 2 Würfel: nicht möglich.

Für 3 Würfel: [mm] \bruch{10*1*1}{10^3}=0.01 [/mm]

Für 4 Würfel: [mm] \bruch{10*1*1*9*\vektor{4 \\3}+ 10*1*1*1 }{10^4}=0.037 [/mm]
(Dreierpasch, 1 Würfel zeigt andere Zahl und Viererpasch)

Für 5 Würfel: [mm] \bruch{10*1*1*9^2*\vektor{5 \\3}+ 10*1*1*1*9*\vektor{5 \\4} + 10*1*1*1*1}{10^5}=0.0851 [/mm]
(Dreierpasch mit 2 anderen Würfeln und Viererpasch mit einem anderen Würfel und Fuenferpasch)

Für 6 Würfel: [mm] \bruch{10*9^3*\vektor{6 \\3}+10*9^2*\vektor{6 \\4}+ 10*9*\vektor{6 \\5}+10-9}{10^6}=0.158491 [/mm]
(Dreierpasch diesmal mit 3 anderen Würfeln; deshalb gibt es 9 Möglichkeiten, daß diese 3 anderen Würfel einen weiteren Pasch zeigen. Diese müssen von der Gesamtzahl abgezogen werden)

Für 7 Würfel:
(Der leichteren Lesbarkeit wegen diesmal nur der Zähler)
[mm] 10*9^4*\vektor{7 \\3}+10*9^3*\vektor{7 \\4}+10*9^2*\vektor{7 \\5}+10*9*\vektor{7 \\6}+10-(9*8*\vektor{4 \\3}+9+9) [/mm]

Hier sind beim Dreierpasch nun 4 Würfel übrig, die Dreierpaschs oder Viererpasch bilden können; beim Viererpasch sind noch 3 Würfel übrig, die einen Dreierpasch bilden können; das muß subtrahiert werden. Und letzteres stellt meine oben entwicklete Formel schon nicht mehr dar...

Stimmen die Überlegungen bisher?
Wie lassen sich die Überlegungen zu 7 Würfeln systematisch in die Formel oben einbauen? Und: Gibt es nicht eine einfachere Lösung??

Nochmal danke!

Bezug
        
Bezug
Dreierpasch: Andere Idee
Status: (Antwort) fertig Status 
Datum: 10:51 So 22.10.2006
Autor: Zwerglein

Hi, Huckleberry,

> Wie groß ist die Wahrscheinlichkeit, bei einem Wurf von n
> 10-seitigen Würfeln mindestens drei gleiche Ergebnisse
> (mindestens einen Dreierpasch) zu bekommen?
>  Meine momentane Vermutung:
>  
> Man addiert die Anzahl der möglichen Dreierpaschs,
> Viererpaschs etc und subtrahiert davon die Anzahl der
> Dreierpaschs, Viererpaschs etc, die unter den dabei nicht
> betrachteten Würfeln vorkommen.
> Zur Errechnung der Wahrscheinlichkeit teilt man diese
> Anzahl dann durch [mm]10^n.[/mm]

Ich würde das Ganze eher über das Gegenereignis angehen!
Das n [mm] \ge [/mm] 3 sein muss, hast Du in Deiner neuen Mitteilung ja schon angemerkt.

Was ist nun also das Gegenereignis zu "mindestens ein Dreierpasch"?
a) Entweder sind alle gewürfelten Zahlen verschieden
oder
b) es gibt höchstens Zahlenpärchen.

Probier's mal über diese Idee!

mfG!
Zwerglein

a)  

Bezug
        
Bezug
Dreierpasch: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 12:10 So 22.10.2006
Autor: Huckleberry

Hier also mein Versuch über die Gegenwahrscheinlichkeit:

Gesucht ist damit die Anzahl der Möglichkeiten, mit n 10-seitigen Würfeln nicht mehr als 2 gleiche Zahlen zu würfeln, also entweder lauter verschiedene Zahlen, oder ein Pärchen, oder zwei Pärchen ... oder n/2 Pärchen.

Die Anzahl der 'ungünstigen' Möglichkeiten ist damit meiner Ansicht nach:

[mm] \summe_{j=0}^{n/2} [\produkt_{i=0}^{j-1} (10-i)*\vektor{n-2*i \\ 2}] \bruch{(10-j)!}{((10-j)-(n-2*j))!} [/mm]


Das Produkt sollte jeweils die Anzahl für 0, 1, zwei, etc. Pärchen liefern (also für j=3: 3 Pärchen: [mm] 10*\vektor{n\\ 2}*9*\vektor{n-2\\ 2}*8*\vektor{n-4\\ 2}*\bruch{7!}{(7-(n-6))!} [/mm]

Stimmt das? Stimmt das auch für eine ungerade Anzahl von Würfeln?


EDIT: Fehler verbessert

Bezug
                
Bezug
Dreierpasch: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:20 Mo 30.10.2006
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Kombinatorik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]