matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenAbbildungen und MatrizenDreieck Schwerpunkt
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Abbildungen und Matrizen" - Dreieck Schwerpunkt
Dreieck Schwerpunkt < Abbildungen+Matrizen < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Abbildungen und Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Dreieck Schwerpunkt: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:42 So 15.03.2009
Autor: Swifty

Aufgabe
Zeigen Sie allgemein, dass der Schwerpunkt S eines Dreiecks ABC Fixpunkt der affinen Abbildung ist, die A auf B, B auf C und C auf A abbildet.

Hallo!
Bei der Aufgabe komm ich echt nicht weiter, und dabei hab ich schon soviel ausprobiert ..
ich hab z.b. eine aff Abbildung aufgestellt, und dann halt die Punkte eingesetzt.
Danach hatte ich 6 Gleichungen mit 12 Unbekannten, und das kann ja nur falsch sein ...
Ich weiss auch, dass der Schwerpunkt s = 1/3*(a+b+c)  ist [a,b,c sind Vektoren).

Es wäre sehr nett, wenn mir jemand einen kleinen Denkanstoß geben könnte...

Danke schonmal
mfg
Swifty

        
Bezug
Dreieck Schwerpunkt: Antwort
Status: (Antwort) fertig Status 
Datum: 17:02 So 15.03.2009
Autor: Event_Horizon

Hallo!

Nimm doch einfach an, es gibt eine affine Abbildung M bestehend aus einer linearen Abbildung L und einer Verschiebung:  [mm] \vec{y}=M(\vec{x})=L(\vec{x})+\vec{t} [/mm] . Diese soll jetzt per Definition die Eigenschaft

[mm] \vec{B}=M(\vec{A})=L(\vec{A})+\vec{t} [/mm]

[mm] \vec{C}=M(\vec{B})=L(\vec{B})+\vec{t} [/mm]

[mm] \vec{A}=M(\vec{C})=L(\vec{C})+\vec{t} [/mm]


haben. Was ist dann [mm] A(\vec{s}) [/mm] , wobei s dein Schwerpunkt ist?

Denk dran, lineare Abbildungen sind linear. Was bedeutet das? Wie kannst du umformen?


Die Rechnung läßt sich in zwei Zeilen hinschreiben und ist recht einfach. Die Idee, Matrizen o.ä. zu berechnen, fürht zu nichts, denn du sollst das allgemein zeigen, es muß also auch im 42-dimensionalen Raum gelten.

Bezug
                
Bezug
Dreieck Schwerpunkt: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:23 So 15.03.2009
Autor: Swifty

Hallo!
Vielen Dank für deine Hilfe!
Das man für die Aufgabe quasi nur 2 Zeilen brauch hätt ich nicht gedacht, hab bis jetzt bei meinen alten versuchen über 2 Seiten ...

Also für den Schwerpunkt S muss ja gelten (weil es halt ein FP ist):
[mm] \vec{S} [/mm] = [mm] M(\vec{S}) [/mm] = [mm] L(\vec{S}) [/mm] + [mm] \vec{t} [/mm]

ich hab jetzt die Gleichung nach [mm] \vec{t} [/mm] aufgelöst und in deine 3 oben genannten Gleichungen eingesetzt.

Eigentlich versteh ich sowohl die Aufgabe als auch deinen Ansatz, nur irgendwie wills nicht richtig klick machen, ich komm einfach nicht auf eine vernünftige Lösung :-(
mfg
Swifty

Bezug
                        
Bezug
Dreieck Schwerpunkt: Antwort
Status: (Antwort) fertig Status 
Datum: 18:21 So 15.03.2009
Autor: Event_Horizon

Hi!

Du sollst nicht nach [mm] \vec{t} [/mm] auflösen.

Setze doch mal [mm] \vec{s}=\frac{1}{3}(\vec{A}+\vec{B}+\vec{C}) [/mm] ein, und benutze die Linearität sowie das Distributivgesetz für lin. Funktionen.

DANN kannst du meine drei Formeln benutzen, und dann steht es da.

Bezug
                                
Bezug
Dreieck Schwerpunkt: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:06 So 15.03.2009
Autor: Swifty

hi
also wenn ich für [mm] \vec{s} [/mm] = [mm] 1/3*(\vec{A} [/mm] + [mm] \vec{B} [/mm] + [mm] \vec{c}) [/mm] einsetze und das dann umforme, komm ich auf:
[mm] \vec{A} [/mm] + [mm] \vec{B} [/mm] + [mm] \vec{C} [/mm] = [mm] L(\vec{A}+\vec{B}+\vec{C}) [/mm] + 3t
Das hab ich dann nach [mm] \vec{A} [/mm] umgeformt und hier eingesetzt:
[mm] \vec{A} [/mm] = [mm] L(\vec{A}) [/mm] + t
also
[mm] L(\vec{A}) [/mm] + t + [mm] \vec{B} [/mm] + [mm] \vec{C} [/mm] = [mm] L(\vec{A}+\vec{B}+\vec{C}) [/mm] + 3t
<=>
[mm] \vec{B} [/mm] + [mm] \vec{C} [/mm] = [mm] L(\vec{B} [/mm] + [mm] \vec{C}) [/mm] + 2t
<=>
[mm] \vec{B} [/mm] = [mm] L(\vec{B} [/mm] + [mm] \vec{C}) [/mm] + 2t - [mm] \vec{C} [/mm]
<=>
[mm] \vec{B} [/mm] = [mm] L(\vec{B}) [/mm] + [mm] L(\vec{C}) [/mm] + 2t - [mm] \vec{C} [/mm]
ich komm aber irgendwie nicht auf eine vernünftige Lösung :-(


Bezug
                                        
Bezug
Dreieck Schwerpunkt: Antwort
Status: (Antwort) fertig Status 
Datum: 20:19 So 15.03.2009
Autor: Event_Horizon

Hmmm, woher kommen deine 3t?


[mm] M(1/3(\vec{A}+\vec{B}+\vec{C}))=L(1/3*(\vec{A}+\vec{B}+\vec{C}))+\vec{t} [/mm]


Jetzt ist L ja linear, und dann gilt [mm] L(1/3*(\vec{A}+\vec{B}+\vec{C}))=1/3*L(\vec{A})+1/3*L(\vec{B})+1/3*L(\vec{C}) [/mm]

Kannst du das mit meinen drei Formeln verbasteln, sodaß da [mm] 1/3*(\vec{A}+\vec{B}+\vec{C}) [/mm] raus kommt?

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Abbildungen und Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]