matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenMathe Klassen 8-10Dreieck
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Mathe Klassen 8-10" - Dreieck
Dreieck < Klassen 8-10 < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Dreieck: Frage (reagiert)
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 09:04 Di 20.09.2005
Autor: JROppenheimer

Ich habe diese Frage in keinem anderen Forum gestellt!

Also mir ist das ja ein bisschen peinlich, weil im Grunde sollte das gar kein Problem sein. Aber nach jetzt 8 Wochen Semestereferien habe ich es geschafft, Mathe erfolgreich aus meinem Kopf zu verbannen. Nun hab ich versprochen einer Freundin bei einer Aufgabe zu helfen, jedoch glaube ich, dass sie mit MEINER Lösung nicht besonders viel anfangen kann, weil ich zwar eine finde, die aber SO kompliziert ist, dass das warscheinlich viel einfacher geht. Bei mir ist das immer durch die Brust ins linke Auge ... von daher hoffe ich, dass ihr mir da helfen könnt:

Gegeben sind die Punkte P [mm] \pmat{ -2 \\ 1 } [/mm] und Q [mm] \pmat{ 2 \\ 1 }. [/mm] Kann man einen (oder mehrere) Punkte R auf den Achsen des Koordinatensystems finden, damit PQR ein rechtwinkliges Dreieck ist?

Also grafisch ist das ja gar kein Problem.
Jetzt hab ich mir gedacht, wenn man den Mittlpunkt zwischen P und Q nimmt einen Kreis darum zieht, hat man die Menge aller Punkte die ein rechtwinkliges Dreieck bilden. Aber wird bei dem Dreieck nicht im Gegenuhrzeigersinn benannt? Dann gäbe es ja nur einen Punkt R auf der y-Achse, nämlich der, der im bei [mm] \pmat{ 0 \\ 1.5 }. [/mm]
Das kann man ja sogar per Pythagoras berechnen, oder einfachen Dreiecksformeln, weil man ja nur die Höhe des Dreiecks braucht, oder?

naja also die größte Einsicht kam mir eben beim Schreiben, aber für andere Ideen bin ich trotzdem offen

danke im Voraus J.R.

        
Bezug
Dreieck: Ansätze
Status: (Antwort) fertig Status 
Datum: 10:05 Di 20.09.2005
Autor: Roadrunner

Hallo J.R.!


Ist denn vorgeschrieben, bei welchem Punkt der rechte Winkel zu liegen hat bzw. ist [mm] $\overline{PQ}$ [/mm] als Hypotenuse vorgegeben?


Wenn man jetzt nicht allzu päpstlich umgeht mit der Nomenklatur (Beschriftung gegen den Uhrzeigersinn) gibt es natürlich noch mehr mögliche Punkte.

Ebenso wenn der rechte Winkel auch bei $P_$ oder $Q_$ liegen darf.


> Dann gäbe es ja nur einen Punkt R auf der y-Achse,
> nämlich der, der im bei [mm]\pmat{ 0 \\ 1.5 }[/mm] .

[notok] Hier erhalte ich aber $R \ [mm] \left( \ 0 \ | \ \red{3} \ \right)$ [/mm] ...


> Das kann man ja sogar per Pythagoras berechnen, oder einfachen
> Dreiecksformeln, weil man ja nur die Höhe des Dreiecks
> braucht, oder?

Das mit den Höhen versteh ich gerade nicht ...

  

> naja also die größte Einsicht kam mir eben beim Schreiben,
> aber für andere Ideen bin ich trotzdem offen


Ansonsten kannst du natürlich auch rechnerisch folgendermaßen vorgehen (Annahme: rechter Winkel bei $R_$) :

[mm] $\overline{PR} [/mm] \ [mm] \perp [/mm] \ [mm] \overline{QR}$ $\gdw$ $\overrightarrow{PR}*\overrightarrow{QR} [/mm] \ = \ 0$

[mm] $\vektor{x_R-(-2) \\ y_R-1}*\vektor{x_R-2 \\ y_R-1} [/mm] \ = \ [mm] \left(x_R+2\right)*\left(x_R-2\right) [/mm] + [mm] \left(y_R-1\right)^2 [/mm] \ = \ 0$

Und da $R_$ ja nun auf den Koordinatenachsen liegen soll, kannst Du in zwei Fälle unterscheiden: [1] [mm] $x_R [/mm] \ = \ 0$   bzw.   [2] [mm] $y_R [/mm] \ = \ 0$ .
Anschließend kann man dann jeweils die zugehörigen [mm] $y_R$ [/mm] bzw. [mm] $x_R$ [/mm] ermitteln.


Gruß vom
Roadrunner


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]