matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenVektorenDreieck-Vektoren
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Vektoren" - Dreieck-Vektoren
Dreieck-Vektoren < Vektoren < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Vektoren"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Dreieck-Vektoren: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:05 Do 19.02.2009
Autor: Mandy_90

Aufgabe
S sei der Schnittpunkt der Seitenhalbierenden des Dreiecks ABC.Zeigen Sie,dass [mm] \overrightarrow{OS}=\bruch{1}{3}(\overrightarrow{OA}+\overrightarrow{OB}+\overrightarrow{OC}) [/mm] gilt.
(Hinweis:Die Seitenhalbierenden teilen sich im Verhltnis 2:1).

Hallo ^^

Ich beschäftige mich grad mit dieser Aufgabe,finde jedoch keinen richtigen Ansatz.Ich weiß nicht so richtig,wie ich da vorgehen soll.
Vielleicht mit einer geschlossenen Vektorkette,aber ich glaube nicht,dass mir das was bringt.
Hat jemand vielleicht nen kleinen Tipp für mich?

[Dateianhang nicht öffentlich]

Dateianhänge:
Anhang Nr. 1 (Typ: JPG) [nicht öffentlich]
        
Bezug
Dreieck-Vektoren: Antwort
Status: (Antwort) fertig Status 
Datum: 21:14 Do 19.02.2009
Autor: abakus


> S sei der Schnittpunkt der Seitenhalbierenden des Dreiecks
> ABC.Zeigen Sie,dass
> [mm]\overrightarrow{OS}=\bruch{1}{3}(\overrightarrow{OA}+\overrightarrow{OB}+\overrightarrow{OC})[/mm]
> gilt.
>  (Hinweis:Die Seitenhalbierenden teilen sich im Verhltnis
> 2:1).

Hallo,
es ist [mm] \overrightarrow{OS}=\overrightarrow{OA}+\overrightarrow{AS}, [/mm]
und
laut Hinweis ist [mm] \overrightarrow{AS}=\bruch{2}{3}\overrightarrow{AM} [/mm]
Jetzt musst du nur noch [mm] \overrightarrow{AM} [/mm] geeignet durch die anderen Vektoren ausdrücken.
Gruß Abakus

>  Hallo ^^
>  
> Ich beschäftige mich grad mit dieser Aufgabe,finde jedoch
> keinen richtigen Ansatz.Ich weiß nicht so richtig,wie ich
> da vorgehen soll.
>  Vielleicht mit einer geschlossenen Vektorkette,aber ich
> glaube nicht,dass mir das was bringt.
>  Hat jemand vielleicht nen kleinen Tipp für mich?
>  
> [Dateianhang nicht öffentlich]


Bezug
                
Bezug
Dreieck-Vektoren: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:36 Do 19.02.2009
Autor: Mandy_90


> > S sei der Schnittpunkt der Seitenhalbierenden des Dreiecks
> > ABC.Zeigen Sie,dass
> >
> [mm]\overrightarrow{OS}=\bruch{1}{3}(\overrightarrow{OA}+\overrightarrow{OB}+\overrightarrow{OC})[/mm]
> > gilt.
>  >  (Hinweis:Die Seitenhalbierenden teilen sich im
> Verhltnis
> > 2:1).
>  
> Hallo,
>  es ist
> [mm]\overrightarrow{OS}=\overrightarrow{OA}+\overrightarrow{AS},[/mm]
>  und
>  laut Hinweis ist
> [mm]\overrightarrow{AS}=\bruch{2}{3}\overrightarrow{AM}[/mm]
>  Jetzt musst du nur noch [mm]\overrightarrow{AM}[/mm] geeignet durch
> die anderen Vektoren ausdrücken.


> > [Dateianhang nicht öffentlich]


OK,vielen Dank für den Tipp,ich habs jetzt so gemacht.Also ich kann ja schreiben:

[mm] \overrightarrow{AM}=-\overrightarrow{OA}+\overrightarrow{OB}+\bruch{1}{2}*\overrightarrow{BC} [/mm]

[mm] \overrightarrow{OS}=\bruch{2}{3}*(-\overrightarrow{OA}+\overrightarrow{OB}+\bruch{1}{2}*\overrightarrow{BC}) [/mm]

[mm] \overrightarrow{OS}=\bruch{1}{3}\overrightarrow{OA}+\bruch{2}{3}\overrightarrow{OB}+\bruch{1}{3}\overrightarrow{OC}. [/mm]

Dann komm aber noch nicht ganz aufs Ergebnis,nur [mm] \bruch{1}{3}\overrightarrow{OA} [/mm] hab ich schonmal.Ich weiß aber auch nicht,wie ich [mm] \overrightarrow{AM} [/mm] anders ausdrücken soll.Außer,ich könnte noch schreiben [mm] \overrightarrow{AM}=\overrightarrow{AC}+\overrightarrow{CM},aber [/mm] das bringt auch nichts und eine andere Möglichkeit seh ich hier grad nicht???

lg



Bezug
                        
Bezug
Dreieck-Vektoren: Antwort
Status: (Antwort) fertig Status 
Datum: 21:42 Do 19.02.2009
Autor: abakus


> > > S sei der Schnittpunkt der Seitenhalbierenden des Dreiecks
> > > ABC.Zeigen Sie,dass
> > >
> >
> [mm]\overrightarrow{OS}=\bruch{1}{3}(\overrightarrow{OA}+\overrightarrow{OB}+\overrightarrow{OC})[/mm]
> > > gilt.
>  >  >  (Hinweis:Die Seitenhalbierenden teilen sich im
> > Verhltnis
> > > 2:1).
>  >  
> > Hallo,
>  >  es ist
> >
> [mm]\overrightarrow{OS}=\overrightarrow{OA}+\overrightarrow{AS},[/mm]
>  >  und
>  >  laut Hinweis ist
> > [mm]\overrightarrow{AS}=\bruch{2}{3}\overrightarrow{AM}[/mm]
>  >  Jetzt musst du nur noch [mm]\overrightarrow{AM}[/mm] geeignet
> durch
> > die anderen Vektoren ausdrücken.
>  
>
> > > [Dateianhang nicht öffentlich]
>
>
> OK,vielen Dank für den Tipp,ich habs jetzt so gemacht.Also
> ich kann ja schreiben:
>  
> [mm]\overrightarrow{AM}=-\overrightarrow{OA}+\overrightarrow{OB}+\bruch{1}{2}*\overrightarrow{BC}[/mm]
>  
> [mm]\overrightarrow{OS}=\bruch{2}{3}*(-\overrightarrow{OA}+\overrightarrow{OB}+\bruch{1}{2}*\overrightarrow{BC})[/mm]

Das stimmt nicht ganz.
[mm] \overrightarrow{OS}=\overrightarrow{OA}+\bruch{2}{3}*\overrightarrow{AM} [/mm]
Das hast nur [mm] \bruch{2}{3}*\overrightarrow{AM} [/mm] berechnet und den Summanden [mm] \overrightarrow{OA} [/mm] vergessen.
Gruß Abakus

>  
> [mm]\overrightarrow{OS}=\bruch{1}{3}\overrightarrow{OA}+\bruch{2}{3}\overrightarrow{OB}+\bruch{1}{3}\overrightarrow{OC}.[/mm]
>  
> Dann komm aber noch nicht ganz aufs Ergebnis,nur
> [mm]\bruch{1}{3}\overrightarrow{OA}[/mm] hab ich schonmal.Ich weiß
> aber auch nicht,wie ich [mm]\overrightarrow{AM}[/mm] anders
> ausdrücken soll.Außer,ich könnte noch schreiben
> [mm]\overrightarrow{AM}=\overrightarrow{AC}+\overrightarrow{CM},aber[/mm]
> das bringt auch nichts und eine andere Möglichkeit seh ich
> hier grad nicht???
>  
> lg
>  
>  


Bezug
                                
Bezug
Dreieck-Vektoren: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:49 Do 19.02.2009
Autor: Mandy_90


>  Das hast nur [mm]\bruch{2}{3}*\overrightarrow{AM}[/mm] berechnet
> und den Summanden [mm]\overrightarrow{OA}[/mm] vergessen.

Ja,das hab ich nur vergessen einzutippen,wenn ich das berechne,komme ich auf [mm] \overrightarrow{OS}=\overrightarrow{OA}+\bruch{2}{3}*(-\overrightarrow{OA}+\overrightarrow{OB}+\bruch{1}{2}*\overrightarrow{BC}) [/mm] und das ist

[mm] \overrightarrow{OS}=\bruch{1}{3}*\overrightarrow{OA}+\bruch{2}{3}*\overrightarrow{OB}+\bruch{1}{3}*\overrightarrow{BC}. [/mm]
Das ist aber nicht das,was in der Aufgabe steht ???

Bezug
                                        
Bezug
Dreieck-Vektoren: Antwort
Status: (Antwort) fertig Status 
Datum: 21:54 Do 19.02.2009
Autor: abakus


>
> >  Das hast nur [mm]\bruch{2}{3}*\overrightarrow{AM}[/mm] berechnet

> > und den Summanden [mm]\overrightarrow{OA}[/mm] vergessen.
>  
> Ja,das hab ich nur vergessen einzutippen,wenn ich das
> berechne,komme ich auf
> [mm]\overrightarrow{OS}=\overrightarrow{OA}+\bruch{2}{3}*(-\overrightarrow{OA}+\overrightarrow{OB}+\bruch{1}{2}*\overrightarrow{BC})[/mm]
> und das ist
>  
> [mm]\overrightarrow{OS}=\bruch{1}{3}*\overrightarrow{OA}+\bruch{2}{3}*\overrightarrow{OB}+\bruch{1}{3}*\overrightarrow{BC}.[/mm]
>  Das ist aber nicht das,was in der Aufgabe steht ???

Richtig. In der Lösung der Aufgabe stehen nur die Vektoren [mm] \overrightarrow{OA}, \overrightarrow{OB}, \overrightarrow{OC}, [/mm] nicht aber der Vektor [mm] \overrightarrow{BC}. [/mm] Den müsstest du ja noch irgendwie ( durch [mm] \overrightarrow{OB} [/mm] und [mm] \overrightarrow{OC}) [/mm] ausdrücken.

Bezug
                                                
Bezug
Dreieck-Vektoren: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:59 Do 19.02.2009
Autor: Mandy_90


> Richtig. In der Lösung der Aufgabe stehen nur die Vektoren
> [mm]\overrightarrow{OA}, \overrightarrow{OB}, \overrightarrow{OC},[/mm]
> nicht aber der Vektor [mm]\overrightarrow{BC}.[/mm] Den müsstest du
> ja noch irgendwie ( durch [mm]\overrightarrow{OB}[/mm] und
> [mm]\overrightarrow{OC})[/mm] ausdrücken.


Aaaah,jetzt hab ichs hingekriegt.
Vielen vielen Dank =)

lg

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Vektoren"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]