matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenMathe Klassen 8-10Dreieck-Konstruktion
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Mathe Klassen 8-10" - Dreieck-Konstruktion
Dreieck-Konstruktion < Klassen 8-10 < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Dreieck-Konstruktion: Dreieck
Status: (Frage) beantwortet Status 
Datum: 11:32 Sa 18.09.2010
Autor: Herrry

Hallo!
Ich habe eine Dreieck-Konstruktions-Aufgabe,bei der ich keinen Ansatz habe.
  Konstruiere ein Dreieck aus:  
  Seitenhalbierende sa, Seitenhalbierende sb und Winkelhalbierende
    Gamma.
  Ich habe diese Frage in keinem anderen Forum gestellt.  
   Hat jemand eine Lösung?          

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.




        
Bezug
Dreieck-Konstruktion: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:26 Sa 18.09.2010
Autor: Event_Horizon

Hallo!

Das ist schon eine kniffelige Augabe. Kannst du evtl mal schreiben, in welchem Kontext diese Aufgabe auftaucht?
Also, stammt sie aus dem Unterricht, wenn ja, zu welchem Thema?


Bezug
                
Bezug
Dreieck-Konstruktion: Dreieck-Konstruktion
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 09:08 Di 21.09.2010
Autor: Herrry

Hallo Event_Horizon!
Diese Aufgabe stammt aus dem allgemeinen Geometrie-Buch vom Verlag Handwerk und Technik.
Ich kann noch eine Zusatzgröße aus den gegebenen Angaben
entnehmen, doch ich habe auch damit noch keine Möglichkeit,ein Teil-
Dreieck zu konstruieren. (Oder übersehe ich etwas?).
Es sind immer nur 2 Größen vorhanden,damit ist noch keine Lösung
gegeben.
Eine Erklärung zu dieser Zusatzgröße ist ohne Skizze zu umständlich.
Kann ich bei Aufgaben auch zeichnen?




Bezug
        
Bezug
Dreieck-Konstruktion: Antwort
Status: (Antwort) fertig Status 
Datum: 18:57 Sa 18.09.2010
Autor: abakus


> Hallo!
>  Ich habe eine Dreieck-Konstruktions-Aufgabe,bei der ich
> keinen Ansatz habe.
>    Konstruiere ein Dreieck aus:  
> Seitenhalbierende sa, Seitenhalbierende sb und
> Winkelhalbierende
>      Gamma.
>    Ich habe diese Frage in keinem anderen Forum gestellt.  
> Hat jemand eine Lösung?      

Hallo,
eine Lösung nicht, nur einen Vorschlag.
Nimm an, du hättest auch die Länge c gegeben. Damit ist das Dreieck ABC eindeutig bestimmt  (Die Seitenhalbierenden teilen sich 2:1, damit kannst du das Dreieck ABC schrittweise konstruieren und auch in Abhängigkeit von [mm] s_a, s_b [/mm] und c berechen (Kosinussatz, Sinussatz; trigonometrische Beziehungen). Damit ist auch die Länge von [mm] w_{\gamma} [/mm] prinzipiell berechenbar.
Die (sicher wahnsinnig komplizierte) Gleichung [mm] w_{\gamma}=... [/mm]
stellst du nach c um und erhältst dabei hoffentlich einen Term, der sich mit einer Hilfskonstruktion (algebraische Methode beim Lösen von Konstruktionsaufgaben) konstruieren lässt.
Sollte c konstruierbar sein, hast du dein Dreieck so gut wie in der Tasche.
Gruß Abakus

>
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
>  
>
>  


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]