matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Analysis-Komplexe ZahlenDrehung eines Punktes
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Uni-Analysis-Komplexe Zahlen" - Drehung eines Punktes
Drehung eines Punktes < Komplexe Zahlen < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Komplexe Zahlen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Drehung eines Punktes: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:51 Di 10.02.2009
Autor: Muemo

Aufgabe
Der Punkt P(x2,y2) der x,y-Ebene mit x2:=Re(z2) und y2:=Im(z2) wird mit dem
Drehpunkt (0,0) in mathematisch positiver Richtung um 45 Grad gedreht und ergibt den Punkt
Q(x3, y3). Ermitteln Sie x3 und y3.

z2:= [mm] \wurzel{2}(1-2i) [/mm]

Hallo,

ich hänge gerade an folgender Übungsaufgabe fest. Bis jetzt habe ich die Klammer bei z2 ausmultipliziert und komme auf [mm] z2:=\wurzel{2}-2*\wurzel{2}i. [/mm] Das Ergebnis habe ich mir in der Gaußschen Zahleneben veranschaulicht. Jetzt weiß ich das, dass ganze nach links gedreht wird. Der jetzige Winkel sollte also:

[mm] tan=\bruch{2*\wurzel2}{\wurzel2} [/mm] = tan [mm] \alpha=2=63.435 [/mm] Grad. Aber wie nun weiter? Mit welcher Rechenoperation pack ich die 45 Grad drauf?

Grüße

        
Bezug
Drehung eines Punktes: Antwort
Status: (Antwort) fertig Status 
Datum: 20:58 Di 10.02.2009
Autor: abakus


> Der Punkt P(x2,y2) der x,y-Ebene mit x2:=Re(z2) und
> y2:=Im(z2) wird mit dem
>  Drehpunkt (0,0) in mathematisch positiver Richtung um 45
> Grad gedreht und ergibt den Punkt
>  Q(x3, y3). Ermitteln Sie x3 und y3.
>  
> z2:= [mm]\wurzel{2}(1-2i)[/mm]
>  
> Hallo,
>  
> ich hänge gerade an folgender Übungsaufgabe fest. Bis jetzt
> habe ich die Klammer bei z2 ausmultipliziert und komme auf
> [mm]z2:=\wurzel{2}-2*\wurzel{2}i.[/mm] Das Ergebnis habe ich mir in
> der Gaußschen Zahleneben veranschaulicht. Jetzt weiß ich
> das, dass ganze nach links gedreht wird. Der jetzige Winkel
> sollte also:
>  
> [mm]tan=\bruch{2*\wurzel2}{\wurzel2}[/mm] = tan [mm]\alpha=2=63.435[/mm]
> Grad. Aber wie nun weiter? Mit welcher Rechenoperation pack
> ich die 45 Grad drauf?
>  
> Grüße

Die Drehung um 45° entspricht der Multiplikation mit der komplexen Zahl 1*(cos 45° + i sin 45°) (bzw. mit [mm] (0,5\wurzel{2}+i*0,5\wurzel{2}) [/mm]
Guß Abakus


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Komplexe Zahlen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]