matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare AbbildungenDrehung Ebene
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Lineare Abbildungen" - Drehung Ebene
Drehung Ebene < Abbildungen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Drehung Ebene: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:40 Mo 29.10.2012
Autor: Unk

Aufgabe
Sei $E$ die Ebene und $V$ die Gruppe der Vektoren. Die Abb. $f: E [mm] \to [/mm] E$ sei die Drehung der Ebene um einen Punkt $P$ um einen Winkel [mm] $\phi$. [/mm] Weiterhin sei $v [mm] \in [/mm] V$ ein Vektor. Man wähle einen Punkt [mm] $A\in [/mm] E$ und setze $B:=A+v$. Schließlich definiere man
[mm] $F(v)=\vec{f(A)f(B)} \in [/mm] V$. Warum ist die rechte Seite von der Wahl von $A$ unabhängig? Wieso ist [mm] $F:V\to [/mm] V$ ein Homomorphismus?
Bezeichne $g:E [mm] \to [/mm] E$ die Drehung um einen bel. anderen Punkt $P'$ um denselben Winkel [mm] $\phi$. [/mm] Für analog zu F definiertes $G$ zeige man
$F=G$.

Hallo,

ich habe etwas Probleme das Ganze vernünftig aufzuschreiben, einfach weil eine beliebige Ebene betrachtet wird.
Wenn man die Ebene dreht und dann den Vektor [mm] $\vec{f(A)f(B)}$ [/mm] berechnet kommt ja sozusagen nur der gedrehte Vektor v heraus, also unabhängig von der Wahl von A. Aber wie schreibe ich schon das ganz formal auf? Dass F dann ein Homomorphismus ist, ist auch klar.
Wie ich das mit dem G dann aufschreibe ist dann auch wieder so eine Sache??

        
Bezug
Drehung Ebene: Antwort
Status: (Antwort) fertig Status 
Datum: 12:50 Di 30.10.2012
Autor: leduart

Hallo
was du in Worten schreibst, musst du zeigen,: v wird um [mm] \phi [/mm] gedreht, unabhängug von A und unabhängig von P.
gruss leduart

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]