matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenPhysikDrehm. Leiterschleife, B-Feld
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Physik" - Drehm. Leiterschleife, B-Feld
Drehm. Leiterschleife, B-Feld < Physik < Naturwiss. < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Physik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Drehm. Leiterschleife, B-Feld: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:23 So 27.05.2007
Autor: subclasser

Aufgabe
Eine Leiterschleife aus geraden Drähten im rechten Winkel zueinander befindet sich in einem homogenen Magnetfeld B. Der Winkel der Normalen auf der Schleifenebene zum Feld ist [mm] $\alpha$. [/mm] Finden Sie eine Formel für das Drehmoment auf diese Leiterschleife, wenn durch diese ein Strom I fließt.
Zeigen Sie, dass sich die Größe [mm] $\vec \mu [/mm] = I [mm] \vec [/mm] A$ wie ein Dipol im B-Feld verhält, d.h. das resultierende Drehmoment lässt sich schreiben als [mm] $\vec [/mm] M = [mm] \vec \mu \times \vec [/mm] B$.

Hallo!

Ich habe mir zu dieser Aufgabe schon einige Gedanken gemacht. Nach stundenlangem Rechnen und Nachschlagen der Rechenregeln für das Vektorprodukt bin ich auf folgende Lösung der Aufgabe gekommen. Da ich bisher noch nie wirklich mit dem Vektorprodukt gerechnet habe, bin ich mir bei der Herleitung meiner Lösung ziemlich unsicher (und bin schon ein paar Mal auf die Schnauze auf dem Weg zu dieser Lösung gefallen, da z.B. das Kommutativgesetz für das Vektorprodukt nicht gilt ...). Es wäre deshalb toll, wenn sich jemand die Zeit nehmen würde, meine Lösung durchzuschauen und dazu seinen Senf abgeben würde und auf evtl. Fehler hinweisen würde!

Ich habe zuerst mein Koordinatensystem folgendermaßen gewählt:
Der Schwerpunkt der Leiterschleife, also der Schnittpunkt der Diagonalen, liegt im Ursprung des Koordinatensystems. Zusätzlich habe ich die Annahme getroffen, dass die Leiterschleife eben an diesem Schnittpunkt an einer Schnur aufgehängt ist. Die Leiterschleife liegt in der xz-Ebene (vergl. Skizze), die Normale zeigt also in Richtung der y-Achse.

[Dateianhang nicht öffentlich]

Mithilfe der Lorentz-Kraft kann man die Kraft [mm] $d\vec [/mm] F$ auf ein Leiterstück der Länge [mm] $d\vec [/mm] L$ herleiten:
[mm] $$d\vec [/mm] F = dq\ [mm] \vec [/mm] v [mm] \times \vec [/mm] B = dq\ [mm] \frac{d \vec L}{dt} \times [/mm] B = I\ [mm] \vec{dL} \times \vec [/mm] B$$
Für ein gerades Leiterstück gilt also
[mm] $$\vec [/mm] F = I [mm] \vec [/mm] L [mm] \times \vec [/mm] B$$
Damit erhalte ich für die beiden Leiterstücke in Richtung der x-Achse:
[mm] $$\vec F_{a,1} [/mm] = I [mm] \vec [/mm] a [mm] \times \vec [/mm] B$$
[mm] $$\vec F_{a,2} [/mm] = I [mm] (-\vec [/mm] a) [mm] \times \vec [/mm] B$$
Da für das Drehmoment nur die senkrechten Komponenten entscheidend sind, folgt
[mm] $$\vec M_{a,1} [/mm] = [mm] -\frac{1}{2} \vec [/mm] b [mm] \times [/mm] (I [mm] \vec [/mm] a [mm] \times \vec [/mm] B)$$
[mm] $$\vec M_{a,2} [/mm] = [mm] \frac{1}{2} \vec [/mm] b [mm] \times [/mm] (-I [mm] \vec [/mm] a [mm] \times \vec [/mm] B) = [mm] -\frac{1}{2} \vec [/mm] b [mm] \times [/mm] (I [mm] \vec [/mm] a [mm] \times \vec [/mm] B)$$
Analog für [mm] $M_b$ [/mm] (dort haben Hebelarm und die Länge dasselbe Vorzeichen, siehe Skizze) ergibt das Gesamtdrehmoment:
[mm] $$\vec [/mm] M = [mm] \vec M_{b,1} [/mm] + [mm] \vec M_{b,2} [/mm] + [mm] \vec M_{a,1} [/mm] + [mm] \vec M_{a,2} [/mm] = [mm] \vec [/mm] a [mm] \times [/mm] (I [mm] \vec [/mm] b [mm] \times \vec [/mm] B) - [mm] \vec [/mm] b [mm] \times [/mm] (I [mm] \vec [/mm] a [mm] \times \vec [/mm] B)$$
Durch Ausklammern von $I$ erhält man
[mm] $$\vec [/mm] M = I [mm] \cdot (\vec [/mm] a [mm] \times (\vec [/mm] b [mm] \times \vec [/mm] B) - [mm] \vec [/mm] b [mm] \times (\vec [/mm] a [mm] \times \vec [/mm] B))$$
Mithilfe der Jacobi-Identität folt aus [mm] $\vec [/mm] a [mm] \times (\vec [/mm] b [mm] \times \vec [/mm] B) + [mm] \vec [/mm] b [mm] \times (\vec [/mm] B [mm] \times \vec [/mm] a) + [mm] \vec [/mm] B [mm] \times (\vec [/mm] a [mm] \times \vec [/mm] b) = [mm] \vec [/mm] 0$
[mm] $$\vec [/mm] a [mm] \times (\vec [/mm] b [mm] \times \vec [/mm] B) - [mm] \vec [/mm] b [mm] \times (\vec [/mm] a [mm] \times \vec [/mm] B) = [mm] (\vec [/mm] a [mm] \times \vec [/mm] b) [mm] \times \vec [/mm] B$$
Und damit gilt mit [mm] $\vec [/mm] A = [mm] (\vec [/mm] a [mm] \times \vec [/mm] b)$
[mm] $$\vec [/mm] M = I\ [mm] \vec [/mm] A [mm] \times \vec [/mm] B$$
was zu zeigen war.

Schon im Vorraus vielen Dank für die viele Mühe, meine Lösung durchzusehen ;-)

Gruß und schönes (verlängertes) Wochende!

Dateianhänge:
Anhang Nr. 1 (Typ: jpeg) [nicht öffentlich]
        
Bezug
Drehm. Leiterschleife, B-Feld: Okay
Status: (Antwort) fertig Status 
Datum: 17:15 Mo 28.05.2007
Autor: Infinit

Hallo subclasser,
das ist doch eine schöne saubere Herleitung, die man durch das Bildchen auch gut verfolgen kann.
Das ist okay so und auch nachvollziehbar.
Viele rüße,
Infinit

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Physik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]