matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenWiederholung Algebra (Schule)Doppelsummenschreibweise
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Wiederholung Algebra (Schule)" - Doppelsummenschreibweise
Doppelsummenschreibweise < Wiederholung Algebra < Schule < Vorkurse < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Wiederholung Algebra (Schule)"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Doppelsummenschreibweise: Tipp
Status: (Frage) beantwortet Status 
Datum: 23:58 Mo 09.12.2013
Autor: matematika

Aufgabe
Doppelsummenschreibweise
Zeige das gilt: [siehe Anhang]

hallo, meine Frage ist, wie ich zeige, dass das dargestellte auf dem Foto gilt? :/  
über eine sehr ausführliche Antwort würde ich mich freuen, denn es wird wahrscheinlich eine Teilaufgabe der Klausur sein..

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Dateianhänge:
Anhang Nr. 1 (Typ: jpg) [nicht öffentlich]
Anhang Nr. 2 (Typ: jpg) [nicht öffentlich]
        
Bezug
Doppelsummenschreibweise: Antwort
Status: (Antwort) fertig Status 
Datum: 00:05 Di 10.12.2013
Autor: schachuzipus

Hallo,


> Doppelsummenschreibweise
> Zeige das gilt: [siehe Anhang]
> hallo, meine Frage ist, wie ich zeige, dass das
> dargestellte auf dem Foto gilt? :/


Na, indem du mal beide Doppelsummen berechnest.

Soviel Arbeit ist das ja nun nicht ...

Schreibe mal alle Summanden hin in "aufzählender Schreibweise"

> über eine sehr ausführliche Antwort würde ich mich
> freuen, denn es wird wahrscheinlich eine Teilaufgabe der
> Klausur sein..

>

> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.

Gruß

schachuzipus

Bezug
        
Bezug
Doppelsummenschreibweise: Antwort
Status: (Antwort) fertig Status 
Datum: 00:12 Di 10.12.2013
Autor: Marcel

Hallo,

> Doppelsummenschreibweise
>  Zeige das gilt: [siehe Anhang]

es wäre mal schön, wenn Du die Aufgabe abtippst:

    [mm] $\sum_{k=1}^2\left(\sum_{i=1}^3 a_{i,k}\right)=\sum_{i=1}^3\left(\sum_{k=1}^2 a_{i,k}\right)$ [/mm]

>  hallo, meine Frage ist, wie ich zeige, dass das
> dargestellte auf dem Foto gilt? :/  
> über eine sehr ausführliche Antwort würde ich mich
> freuen, denn es wird wahrscheinlich eine Teilaufgabe der
> Klausur sein..

Ziemlich "am Allgemeinsten" habe ich das mal vor kurzem

    hier (klick!)

beschrieben!

Gruß,
  Marcel

Bezug
                
Bezug
Doppelsummenschreibweise: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 00:15 Di 10.12.2013
Autor: schachuzipus

Hallo Marcel,


> Hallo,

>

> > Doppelsummenschreibweise
> > Zeige das gilt: [siehe Anhang]

>

> es wäre mal schön, wenn Du die Aufgabe abtippst:

>

> [mm]\sum_{k=1}^2\left(\sum_{i=1}^3 a_{i,k}\right)=\sum_{i=1}^3\left(\sum_{k=1}^2 a_{i,k}\right)[/mm]

>

> > hallo, meine Frage ist, wie ich zeige, dass das
> > dargestellte auf dem Foto gilt? :/
> > über eine sehr ausführliche Antwort würde ich mich
> > freuen, denn es wird wahrscheinlich eine Teilaufgabe der
> > Klausur sein..

>

> Ziemlich "am Allgemeinsten" habe ich das mal vor kurzem

>

> hier (klick!)

>

> beschrieben!

Für eine Wiederholung einer Schulaufgabe scheint mir der Weg über das Ausrechnen angenehmer zu sein ;-)

Aber danke für den link!

Gruß

schachuzipus

Bezug
                        
Bezug
Doppelsummenschreibweise: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 00:28 Di 10.12.2013
Autor: Marcel

Hallo,

> Hallo Marcel,
>  
>
> > Hallo,
>  >
>  > > Doppelsummenschreibweise

>  > > Zeige das gilt: [siehe Anhang]

>  >
>  > es wäre mal schön, wenn Du die Aufgabe abtippst:

>  >
>  > [mm]\sum_{k=1}^2\left(\sum_{i=1}^3 a_{i,k}\right)=\sum_{i=1}^3\left(\sum_{k=1}^2 a_{i,k}\right)[/mm]

>  
> >
>  > > hallo, meine Frage ist, wie ich zeige, dass das

>  > > dargestellte auf dem Foto gilt? :/

>  > > über eine sehr ausführliche Antwort würde ich mich

>  > > freuen, denn es wird wahrscheinlich eine Teilaufgabe

> der
>  > > Klausur sein..

>  >
>  > Ziemlich "am Allgemeinsten" habe ich das mal vor kurzem

>  >
>  > hier (klick!)

>  >
>  > beschrieben!

>  
> Für eine Wiederholung einer Schulaufgabe scheint mir der
> Weg über das Ausrechnen angenehmer zu sein ;-)

ich finde, dass auch Schüler lernen sollten:
Wenn man alle Einträge einer Matrix zusammenaddiert, dann geht das
auch, indem man

   zuerst die Einträge alle Spalten summiert und dann diese Spaltensummen addiert

oder indem man

   zuerst die Einträge alle Zeilen summiert und dann diese Zeilensummen addiert.

Das ist wunderbar anschaulich, und kann man durchaus auch mit größeren
Matrizen durchführen - man sollte die Schüler auch mal fördern, und nicht
unterfordern. (Ist nicht böse gemeint, aber ich denke echt, dass manche(r)
Lehrer(in) seinen/ihren Schülern durchaus auch mehr zutrauen sollte - und
selbst, wenn es nicht direkt klappt: Vielleicht weckt man so gerade den
Ehrgeiz, das doch verstehen zu wollen... und "Einsetzen ohne Nachzudenken"
wäre für mich nur der letzte Ausweg, wenn alles andere scheitert ;-) ).

Gruß,
  Marcel

Bezug
                                
Bezug
Doppelsummenschreibweise: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 00:37 Di 10.12.2013
Autor: schachuzipus

Hallo nochmal.


Das sollte ja keine Kritik sein und prinzipiell hast du ja recht und auch für das Verständnis ist es sinnvoll. Worauf ich hinaus wollte, ist, dass man das in einer Klausur, in der noch reichlich Aufgaben zu rechnen sind, am effizientesten durch schnelles Hinschreiben beider Seiten verarzten kann.


Gruß

schachuzipus

Bezug
                                        
Bezug
Doppelsummenschreibweise: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 00:42 Di 10.12.2013
Autor: Marcel

Hallo,

> Hallo nochmal.
>  
>
> Das sollte ja keine Kritik sein und prinzipiell hast du ja
> recht und auch für das Verständnis ist es sinnvoll.
> Worauf ich hinaus wollte, ist, dass man das in einer
> Klausur, in der noch reichlich Aufgaben zu rechnen sind, am
> effizientesten durch schnelles Hinschreiben beider Seiten
> verarzten kann.

ja, sofern es sich um so'n paar Summanden handelt. Ich würde in der
Klausur aus der 2 eine 20 und aus der 3 eine 30 machen... Ich bin aber
auch fies. ;-)

Gruß,
  Marcel

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Wiederholung Algebra (Schule)"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]