matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und ReihenDoppelsumme vereinfachen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Folgen und Reihen" - Doppelsumme vereinfachen
Doppelsumme vereinfachen < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Doppelsumme vereinfachen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:43 Mi 30.07.2014
Autor: julsch

Hallo zusammen,

ich versuche momentan eine Doppelsumme zu vereinfachen. Ich habe eine Summe aus Kovarianzen [mm] Cov(z_{j},z_{k})=\gamma_{|j-k|}, [/mm] welche ich gerne vereinfachen möchte. Ich habe schon gezeigt, dass
[mm] \summe_{j=1}^{t-1} \summe_{k=j+1}^{t} \gamma_{k-j} [/mm] = [mm] \summe_{j=1}^{t-1} [/mm] (t-j) [mm] \gamma_{j}, [/mm] wobei [mm] \gamma_{j}=Cov(z_{s},z_{s+j}) [/mm] ist. Dadurch, dass meine [mm] z_{t} [/mm] stationär sind, weiß ich, dass die Kovarianzen nur von dem Abstand j abhängen.
Ich möchte sowas jetzt auch für [mm] \summe_{i=1}^{t} \summe_{j=t+1}^{N} \gamma_{j-i} [/mm] zeigen. Ich habe mir schon für verschiedene t und N die Summe aufgeschrieben, komme jedoch nicht zu einem Ergebnis. Lässt sich diese Summe überhaupt so vereinfachen, dass ich nur noch eine Summe dort stehen habe bzw. meine Kovarianz nur noch vom Abstand abhängt, d.h. anstatt [mm] \gamma_{|j-i|} [/mm] nur noch [mm] \gamma_{j} [/mm] in der Summe vorkommt?

Ich hoffe, dass ich verständliche machen konnte, worum es geht.

Liebe Grüße,

julsch

        
Bezug
Doppelsumme vereinfachen: Antwort
Status: (Antwort) fertig Status 
Datum: 20:03 Mi 30.07.2014
Autor: Marcel

Hallo julsch,

> Hallo zusammen,
>  
> ich versuche momentan eine Doppelsumme zu vereinfachen. Ich
> habe eine Summe aus Kovarianzen
> [mm]Cov(z_{j},z_{k})=\gamma_{|j-k|},[/mm] welche ich gerne
> vereinfachen möchte. Ich habe schon gezeigt, dass
>  [mm]\summe_{j=1}^{t-1} \summe_{k=j+1}^{t} \gamma_{k-j}[/mm] = [mm]\summe_{j=1}^{t-1}[/mm] (t-j) [mm]\gamma_{j},[/mm]

ich zeig' Dir einfach mal, wie man das "direkt sehen" kann:
Wir bilden eine Matrix, nach rechts tragen wir die [mm] $j=1\,...,t-1$ [/mm] ab, und nach
unten schreiben wir die Summanden der zugehörigen inneren Summe. Aus
*Zugehörigkeitsgründen* (das siehst Du später sicher selbst, was ich damit
meine) werde ich auch "additive Nullen" ergänzen.

Also genauer: Wir schreiben eine [mm] $(t-1)\,$ $\times$ $(t-1)\,$ [/mm] Matrix [mm] $A=(a_{j,k})$ [/mm] wie folgt

    [mm] $A=\pmat{\gamma_1 & \gamma_1 & \gamma_1 & ... & \gamma_1 & \gamma_1 & \gamma_1 \\ \gamma_2 & \gamma_2& \gamma_2& ...& $\gamma_2 & \gamma_2 & 0\\\gamma_3 & \gamma_3& \gamma_3& ...& \gamma_3 & 0 & 0 \\ ... \\\gamma_{t-2} & \gamma_{t-2} & 0 & ... & 0 & 0 & 0\\ \gamma_{t-1} & 0 & 0 & ... & 0 & 0 & 0}$ [/mm]

Wenn Du willst, kannst Du Dir mal genau die [mm] $a_{j,k}$ [/mm] definieren. Aber das ist
nicht so das Wichtige. Das, was Du Dir klarmachen solltest, ist:

    [mm] $\bullet$ [/mm] Summe über die erste Spalte von [mm] $A\,$ [/mm] ist [mm] $\sum_{k=\red{1}+1}^t \gamma_{k-\red{1}}$ [/mm]

    [mm] $\bullet$ [/mm] Summe über die zweite Spalte von [mm] $A\,$ [/mm] ist [mm] $\sum_{k=\red{2}+1}^t \gamma_{k-\red{2}}$ [/mm] (eigentlich ist es die letzte Summe +0, aber additive Nullen ändern nix am Wert!)

    [mm] $\bullet$ [/mm] Summe über die dritte Spalte von [mm] $A\,$ [/mm] ist [mm] $\sum_{k=\red{3}+1}^t \gamma_{k-\red{3}}$ [/mm] (eigentlich ist es die letzte Summe +0+0, aber additive Nullen ändern nix am Wert!)


Die Summe

    [mm] $\summe_{j=1}^{t-1} \summe_{k=j+1}^{t} \gamma_{k-j}$ [/mm]

ist also die Summe über alle Spaltensummen von [mm] $A\,.$ [/mm] Das ist (wegen
Kommutativität und Assoziativität der Addition) identisch mit der Summe
aller Matrixeinträge der Matrix [mm] $A\,.$ [/mm] Die Summe über alle Matrixeinträge
der Matrix [mm] $A\,$ [/mm] kann man auch "mit Zeilensummen" berechnen.
Die erste Zeilensumme ist

    [mm] $(t-1)*\gamma_1\,,$ [/mm]

die zweite ist

    [mm] $(t-2)*\gamma_2$ [/mm]

etc. pp.. So gelangt man schließlich zu Deinem Term

    [mm] $\sum_{j=1}^{t-1} (t-j)*\gamma_j\,.$ [/mm]

Das kann man übrigens noch umschreiben:

    [mm] $\sum_{j=1}^{t-1} (t-j)*\gamma_j=\left(\sum_{j=1}^{t-1} (t*\gamma_j)\right)-\sum_{j=1}^{t-1}(j*\gamma_j)=\left(t*\sum_{j=1}^{t-1}\gamma_j\right)-\sum_{j=1}^{t-1}(j*\gamma_j)\,.$ [/mm]

Jedenfalls: Schau' mal, ob Du nicht im Prinzip analog zu oben vorgehen
kannst. Gibt's eigentlich irgendwelche Nebenbedingungen an [mm] $N\,$? [/mm]

Gruß,
  Marcel

Bezug
        
Bezug
Doppelsumme vereinfachen: Antwort
Status: (Antwort) fertig Status 
Datum: 20:55 Mi 30.07.2014
Autor: Marcel

Hallo julsch,

das [mm] $t\,$ [/mm] ist ja fest. Ich erstelle für

    [mm] $\sum_{i=1}^t\sum_{j=t+1}^N \gamma_{j-i}$ [/mm]

eine [mm] $t\,$ $\times$ [/mm] $(N-1)$-Matrix. Aus Gründen der Demonstration wähle ich
[mm] $t=5\,,$ [/mm] ich denke, Du kannst das dann nachher allgemeiner machen.

Also:

    [mm] $\pmat{ 0 & 0 & 0 & 0 & \gamma_1 \\ 0 & 0 & 0 & \gamma_2 & \gamma_2\\ 0 & 0 & \gamma_3 & \gamma_3 & \gamma_3\\0 & \gamma_4 & \gamma_4 & \gamma_4 & \gamma_4\\\gamma_5 & \gamma_5 & \gamma_5 & \gamma_5 & \gamma_5\\\gamma_6 & \gamma_6 & \gamma_6 & \gamma_6 & \gamma_6 \\ ... & ... & ... & ... & ...\\ \gamma_{N-5} & \gamma_{N-5} & \gamma_{N-5} & \gamma_{N-5} & \gamma_{N-5}\\ \gamma_{N-4} & \gamma_{N-4} & \gamma_{N-4} & \gamma_{N-4} & 0\\ \gamma_{N-3} & \gamma_{N-3} & \gamma_{N-3} & 0 & 0\\\\ \gamma_{N-2} & \gamma_{N-2} & 0 & 0 & 0\\ \gamma_{N-1} & 0 & 0 & 0 & 0}$ [/mm]

Die Summe aller Spaltensummen ist Deine gesuchte Summe. Du siehst mit
Zeilensummen:
Sie ist identisch mit

    [mm] $\gamma_1+2\gamma_2+3\gamma_3+4\gamma_4+5*(\gamma_5+\gamma_6+...+\gamma_{N-5})+4\gamma_{N-4}+3\gamma_{N-3}+2\gamma_{N-2}+\gamma_{N-1}=\sum_{k=1}^{t-1} \{k*(\gamma_k+\gamma_{N-k}\}+t*\sum_{k=t}^{N-t}\gamma_k\,,$ [/mm]

oder Du kannst das auch schreiben

    [mm] $=\left(\sum_{k=1}^{t-1} (k*\gamma_k)\right)+\left(\sum_{k=t}^{N-t} (t*\gamma_k)\right)+\sum_{k=N-t+1}^{N-1} [/mm] ( [mm] (N-k)\gamma_k)$ [/mm]

Ob das das ist, was Du willst und gebrauchen kannst, weiß ich nun nicht.
Falls ja: Überprüfe das bitte auch nochmal (für verschiedene [mm] $t\,,$ [/mm] insbesondere
auch für spezielle [mm] $t\,$ [/mm] wie [mm] $t=1\,$ [/mm] bzw. [mm] $t=N-1\,$). [/mm]

Gruß,
  Marcel

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]