matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra / VektorrechnungDoppelspiegelung
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Lineare Algebra / Vektorrechnung" - Doppelspiegelung
Doppelspiegelung < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra / Vektorrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Doppelspiegelung: Keine Idee
Status: (Frage) beantwortet Status 
Datum: 10:00 Mi 13.04.2005
Autor: MisterSarotti

Wie ihr seht bin ich voll verzweifelt. Ich mache mir wohl zu viele Gedanken ;-( Ich hoffe ich bin nicht zu nervig!

Trotzdem dann noch eine kleine Frage. Ich habe eine megalange Aufgabe und komme nur an einem Punkt nicht weiter. Ich habe drei Punkte gegeben: G(2/-1/-2), S(1/-2/2) und N(2/2/1). Ich sollte die Urprungsgerade aufstellen. g=OG und s=OS wobei s senkrecht auf g steht. Dann soltle ich die Abbilungsmatrix Tg für die Achsenspiegelung eines beliebigen Punktes P an der Geraden g bilden. Alles soweit gut! Dann das gleiche Spiel mit einem beliebigen Punktes P an der Geraden s (Abbilungsmatrix Ts). Als nächstes sollten die Resultate untersucht werden: T1=Tg*Ts und T2=Ts*Tg. Es kam raus, dass beide Abbildungen gleich sind. Nun aber zu der Aufgabe, die ich nicht verstanden habe, oder besser, die ich nicht lösen kann:

Angenommen, ein beliebiger Punkt P werde an g gespiegelt und der so entstandene Bildpunkt nochmals an s. Das Resultat dieser Doppelspiegelung sei der Punkt P´´. Interpretieren Sie ihre Entdeckung aus 5.4 für diese Doppelspielgelung!

5.4 ist das Resultat der Abblingsmatrizen. Oben im Text beschrieben.



        
Bezug
Doppelspiegelung: Antwort
Status: (Antwort) fertig Status 
Datum: 11:11 Mi 13.04.2005
Autor: banachella

Hallo MisterSarotti!

Zuerstmal: Kopf hoch! Meistens ist Mathe nur halb so schlimm, wie man auf den ersten Blick meint... :-)

Ich bin ein bisschen unglücklich mit dem Begriff Achsenspiegelung. Ich würde das eigentlich nur im 2-dimensionalen so bezeichnen. Deshalb vorweg erstmal, wie ich mit dem Begriff umgegangen bin:
Die Achsenspiegelung [mm] $T_g$ [/mm] ist festgelegt durch
[mm] $T_g\big(\overrightarrow{0G}\big)=\overrightarrow{0G},\quad T_g\big(\overrightarrow{0S}\big)=-\overrightarrow{0S},\quad T_g\big(\overrightarrow{0N}\big)=-\overrightarrow{0N}$. [/mm]
Das ergibt sich deshalb so, weil [mm] $\overrightarrow{0S},\overrightarrow{0N}\perp\overrightarrow{0G}$. [/mm]

Als Interpretation fiele mir höchstens folgendes ein:
Grundsätzlich gilt für Spiegelungen - also auch für [mm] $T_g, T_s$ [/mm] - dass [mm] $T_g^{-1}=T_g$. [/mm] Oder anders ausgedrückt: [mm] $T_g\big(T_g(x)\big)=x$ [/mm] für jedes [mm] $x\in\IR^{3}$. [/mm]
Und weil [mm] $(T_gT_s)(T_gT_s)\stackrel{5.4}=T_gT_sT_sT_g=id$ [/mm] ist, ist auch [mm] $T_gT_s$ [/mm] eine Spiegelung, nicht nur eine Doppelspiegelung. Und wenn du dir nochmal die Wirkung auf $G,S$ und $N$ ansiehst, kannst du auch sehen, woran gespiegelt wird.

Hoffentlich hilft dir das ein bisschen weiter!

Gruß, banachella

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra / Vektorrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]