matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenSonstigesDoppelintegral unitärer Raum
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Sonstiges" - Doppelintegral unitärer Raum
Doppelintegral unitärer Raum < Sonstiges < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Doppelintegral unitärer Raum: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 09:43 Do 01.12.2011
Autor: couldbeworse

Aufgabe
Sei [mm]V_n := \{p \in \IC \left[x \right[ : deg(p)\le ng\}[/mm] der Vektorraum aller komplexen
Polynome vom Grad [mm]\le n, n\in \IN[/mm]. Komplexe Zahlen z schreiben wir in der Form z = x + iy und
defi nieren für [mm]p,q \in V_n[/mm]:

[mm]\left\langle p,q \right\rangle:=\int_{0}^{1} \int_{0}^{1}p(z)\bar q(z)\, dxdy[/mm]


a) Zeigen Sie, dass [mm](V_n;\left\langle , \right\rangle)[/mm] ein unitärer Vektorraum ist.
b) Bestimmen Sie eine Orthonormalbasis von [mm](V_1;\left\langle , \right\rangle)[/mm].

(Erläuterung: Für eine Funktion [mm]f: \IC \rightarrow \IC, f(z) = f_1(z) + if_2(z)[/mm] und [mm]a, b, c, d[/mm] mit [mm]a\le b, c\le d[/mm] setzt man
[mm]\int_{a}^{b} \int_{c}^{d}f(z)\, dxdy = \int_{a}^{b} \int_{c}^{d}f_1(z)\, dxdy + i\int_{a}^{b} \int_{c}^{d}f_2(z)\, dxdy[/mm]).

Hallo!

Ich wollte gerade die ONB bestimmen und komme jetzt mit der Definition des Integrals nicht zurecht. Ich verstehe nicht wie man die Funktion zerlegen soll und warum nach der Zerlegung die Zahl selbst nicht in Real- und Imaginärteil zerlegt ist. Wie ist das gemeint?

Ich hab es jetzt z.B. so gemacht, und weiß leider überhaupt nicht ob es stimmt:

[mm]\left\langle 1+i,1+i \right\rangle=\int_{0}^{1} \int_{0}^{1}(1+i) \bar{(1+i)}\, dxdy = \int_{0}^{1} \int_{0}^{1}(1+i)(1-i)\, dxdy = \int_{0}^{1} \int_{0}^{1}2\, dxdy = \int_{0}^{1} \left[ x^2+i2xy \right]_{0}^{1} \, dy = \int_{0}^{1} 1+i2y \, dy = \left[ y+iy^2 \right]_{0}^{1} = 1+i[/mm]

Wenn mir jemand anhand eines Beispiels zeigen könnte wie es geht wär ich sehr dankbar!

Ist es überhaupt richtig für Gram-Schmidt [mm]\IC[/mm] als [mm]\IR[/mm]-Vektorraum zu betrachten, also mit Basis [mm](1+i, x+iy)[/mm]?

Liebe Grüße
couldbeworse

        
Bezug
Doppelintegral unitärer Raum: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 09:45 Do 01.12.2011
Autor: couldbeworse

Jetzt habe ich gerade gesehen, dass ich die Frage versehentlich in "Mathe Oberstufe" statt "Mathe Uni" gestellt habe, wie kann ich das korrigieren?


Bezug
        
Bezug
Doppelintegral unitärer Raum: Antwort
Status: (Antwort) fertig Status 
Datum: 09:56 Do 01.12.2011
Autor: fred97


> Sei [mm]V_n := \{p \in \IC \left[x \right[ : deg(p)\le ng\}[/mm] der
> Vektorraum aller komplexen
>  Polynome vom Grad [mm]\le n, n\in \IN[/mm]. Komplexe Zahlen z
> schreiben wir in der Form z = x + iy und
> defi nieren für [mm]p,q \in V_n[/mm]:
>  
> [mm]\left\langle p,q \right\rangle:=\int_{0}^{1} \int_{0}^{1}p(z)\bar q(z)\, dxdy[/mm]
>  
>
> a) Zeigen Sie, dass [mm](V_n;\left\langle , \right\rangle)[/mm] ein
> unitärer Vektorraum ist.
>  b) Bestimmen Sie eine Orthonormalbasis von
> [mm](V_1;\left\langle , \right\rangle)[/mm].
>  
> (Erläuterung: Für eine Funktion [mm]f: \IC \rightarrow \IC, f(z) = f_1(z) + if_2(z)[/mm]
> und [mm]a, b, c, d[/mm] mit [mm]a\le b, c\le d[/mm] setzt man
>  [mm]\int_{a}^{b} \int_{c}^{d}f(z)\, dxdy = \int_{a}^{b} \int_{c}^{d}f_1(z)\, dxdy + i\int_{a}^{b} \int_{c}^{d}f_2(z)\, dxdy[/mm]).
>  
> Hallo!
>  
> Ich wollte gerade die ONB bestimmen und komme jetzt mit der
> Definition des Integrals nicht zurecht. Ich verstehe nicht
> wie man die Funktion zerlegen soll und warum nach der
> Zerlegung die Zahl selbst nicht in Real- und Imaginärteil
> zerlegt ist. Wie ist das gemeint?



1, [mm] \overline{q}(z):= \overline{q(z)} [/mm]

2. Beispiel:

[mm] p(z)=z^2, q(z)=z^2 [/mm]

Jetzt rechne nach:

           <p,q>= [mm] x^3+y^2x+i(-x^2y-y^3) [/mm]

Jetzt Real - und Imaginärteil integrieren.


>  
> Ich hab es jetzt z.B. so gemacht, und weiß leider
> überhaupt nicht ob es stimmt:
>  
> [mm]\left\langle 1+i,1+i \right\rangle=\int_{0}^{1} \int_{0}^{1}(1+i) \bar{(1+i)}\, dxdy = \int_{0}^{1} \int_{0}^{1}(1+i)(1-i)\, dxdy = \int_{0}^{1} \int_{0}^{1}2\, dxdy = \int_{0}^{1} \left[ x^2+i2xy \right]_{0}^{1} \, dy = \int_{0}^{1} 1+i2y \, dy = \left[ y+iy^2 \right]_{0}^{1} = 1+i[/mm]
>  
> Wenn mir jemand anhand eines Beispiels zeigen könnte wie
> es geht wär ich sehr dankbar!
>  
> Ist es überhaupt richtig für Gram-Schmidt [mm]\IC[/mm] als
> [mm]\IR[/mm]-Vektorraum zu betrachten

Nein

FREd

>, also mit Basis [mm](1+i, x+iy)[/mm]?

>  
> Liebe Grüße
>  couldbeworse


Bezug
                
Bezug
Doppelintegral unitärer Raum: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 10:08 Do 01.12.2011
Autor: couldbeworse

Hallo FREd!


> 1, [mm]\overline{q}(z):= \overline{q(z)}[/mm]
>  
> 2. Beispiel:
>  
> [mm]p(z)=z^2, q(z)=z^2[/mm]
>  
> Jetzt rechne nach:
>  
> <p,q>= [mm]x^3+y^2x+i(-x^2y-y^3)[/mm]
>  
> Jetzt Real - und Imaginärteil integrieren.
>  

Ahh! Ok, danke jetzt macht es endlich Sinn.


> > Ist es überhaupt richtig für Gram-Schmidt [mm]\IC[/mm] als
> > [mm]\IR[/mm]-Vektorraum zu betrachten
>  
> Nein

Aber Gram-Schmidt mit Standardbasis [mm](1,z)[/mm] paßt dann, oder?

Liebe Grüße
couldbeworse
  


Bezug
                        
Bezug
Doppelintegral unitärer Raum: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 10:20 Di 06.12.2011
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]