matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenInduktionsbeweiseDivision mit Rest
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Induktionsbeweise" - Division mit Rest
Division mit Rest < Induktion < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Induktionsbeweise"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Division mit Rest: Frage zur Aufgabenstellung
Status: (Frage) beantwortet Status 
Datum: 16:02 Di 11.11.2008
Autor: DerNo

Aufgabe
Sei n [mm] \in \IZ, [/mm] n [mm] \not= [/mm] 0. Zeigen Sie, daß es für jedes m [mm] \in \IZ [/mm] eindeutig durch m bestimmte q, r [mm] \in \IZ [/mm] gibt mit

m = qn + r und [mm] 0\le [/mm] r < |n| .

q heißt partieller Quotient und r Rest der Divison von m durch n.  

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.





Ich hab jetzt glaube schon ne vollständige Induktion dafür gemacht, aber muss ich nicht einfach nur zeigen, dass die beiden eindeutig sind? Wie mach ich das denn so auf die schnelle??

Weiß jetzt ebend bloß nicht so genau was ebend gemeint ist, sprich, das eigentliche Ziel...

Brauch also nur den Anstoß , bzw. auch nur ne Bestätigung dass ne vollständige Ind. hier richtig ist.

(Ich glaub andere haben die Aufgabe on gestellt, aba die wollen ja ne Lösung, ich nur den Anstoß) :)

        
Bezug
Division mit Rest: Antwort
Status: (Antwort) fertig Status 
Datum: 16:42 Di 11.11.2008
Autor: angela.h.b.


> Sei n [mm]\in \IZ,[/mm] n [mm]\not=[/mm] 0. Zeigen Sie, daß es für jedes m
> [mm]\in \IZ[/mm] eindeutig durch m bestimmte q, r [mm]\in \IZ[/mm] gibt mit
>  
> m = qn + r und [mm]0\le[/mm] r < |n| .
>  
> q heißt partieller Quotient und r Rest der Divison von m
> durch n.  

>
> Ich hab jetzt glaube schon ne vollständige Induktion dafür
> gemacht, aber muss ich nicht einfach nur zeigen, dass die
> beiden eindeutig sind? Wie mach ich das denn so auf die
> schnelle??

Hallo,

[willkommenmr].

Du glaubst (?), daß Du es mit Induktion gemacht hast? Das mußt Du doch gemerkt haben...
Mir ist im Moment nicht klar, wie das mit Induktion geht - aber das muß nichts heißen.

Auf jeden Fall mußt Du nicht nur die Eindeutigkeit zeigen, sondern die Existenz.

Auf die Schnelle könnt's so klappen:

Betrachte die Menge  [mm] M:=\{ m- an | a\in \IZ, m-an\ge 0\}. [/mm]

Das ist eine Teilmenge der natürlichen Zahlen, also gibt es ein kleinstes Element r.

Jetzt kannst Du zeigen, daß [mm] 0\le [/mm] r < n ist.

Als nächstes nimm an, daß es zwei solche Darstellungen gibt und führe das zum Widerspruch.

Gruß v. Angela







>
> Weiß jetzt ebend bloß nicht so genau was ebend gemeint ist,
> sprich, das eigentliche Ziel...
>  
> Brauch also nur den Anstoß , bzw. auch nur ne Bestätigung
> dass ne vollständige Ind. hier richtig ist.
>  
> (Ich glaub andere haben die Aufgabe on gestellt, aba die
> wollen ja ne Lösung, ich nur den Anstoß) :)


Bezug
                
Bezug
Division mit Rest: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:59 Di 11.11.2008
Autor: DerNo

Achso...
Ja, siehste ich weiß ja eben net obs ne Induktion ist :D
Weils nen Anfang hat und nen vom Teiler bestimmtes Ende, was aba schier unendlich groß sein kann :)
Anfang Ende und das dazwische habsch eben Induktionsmäßig nachgewiesen...


Aber Danke für den Ansatz :)

Bezug
                        
Bezug
Division mit Rest: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 00:29 Mi 12.11.2008
Autor: reverend

gipsa aune doische Übasezzunk von?

Ganz ehrlich, dies ist kein Chat, sondern ein Forum für Hilfestellungen. Du musst ja kein Behördendeutsch schreiben, aber ein bisschen kannst Du Dich schon um sprachliche Genauigkeit bemühen.

iwi vllt.
<3

Danke.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Induktionsbeweise"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]