matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenSchul-AnalysisDivergenzquotient
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Schul-Analysis" - Divergenzquotient
Divergenzquotient < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Divergenzquotient: Komm nicht weiter..
Status: (Frage) beantwortet Status 
Datum: 11:19 So 02.10.2005
Autor: slice

Hey!
Also ich hab hier 2 Aufgaben bei denen ich irgendwie aufm SChlauch stehe!

Die erste ist mit den Ableitungsregeln gemacht (Kettenregel und Reziprokenregel):
[mm] f(x)=(\wurzel{x}+ \bruch{1}{\wurzel{x}})² [/mm]

Da komme ich nur bis:
[mm] 2*\wurzel{x}+\bruch{2}{\wurzel{x}}*(0,5x^{-0,5}+ \bruch{0,5x^{-0,5}}{x}) [/mm]

Und die zweite aufgabe ist eigentlich ziemlich leicht aber ich hänge da ein bisscehn :-) also die ableitung von f(x)=x³ ist ja f(x)=3x²..
wenn ich das aber mit dem divergenzquotienten machen stecke ich ei

[mm] \limes_{x\rightarrow\ x0} \bruch{x³-x0³}{x-x0} [/mm] fest..
wenn ich es mit ner anderen art des divergenzquotienten rechne(zb mit h) komme ich auch auf 3x² aber nicht mit x0 und in dem fall muss ichs mit x0 rechnen...

        
Bezug
Divergenzquotient: zu Aufgabe 2 (edit.)
Status: (Antwort) fertig Status 
Datum: 11:32 So 02.10.2005
Autor: Loddar

Guten Morgen slice!


> wenn ich das aber mit dem divergenzquotienten machen
> stecke ich bei
>  
> [mm]\limes_{x\rightarrow x_0} \bruch{x³-x_0³}{x-x_0}[/mm] fest..

Mach doch mal folgende MBPolynomdivision: [mm] $\left(x^3 - x_0^3\right) [/mm] \ : \ [mm] \left(x-x_0\right) [/mm] \ = \ ...$


Diese MBPolynomdivision geht auf und Du erhältst damit auch schnell Dein Ergebnis ...


[aufgemerkt] Übrigens heißt das Differentialquotient ;-) ...


Gruß
Loddar


Bezug
                
Bezug
Divergenzquotient: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:38 So 02.10.2005
Autor: slice

$ [mm] \left(x^3 - x_0^3\right) [/mm] \ : \ [mm] \left(x-x_0\right) [/mm] \ = \ ... $

das hab ich ja versucht nur wenn man dann rückerchnet, kommt doch [mm] x²*x_0 [/mm] raus und das kann ich nicht von [mm] -x_0^3 [/mm] abziehen..

Bezug
                        
Bezug
Divergenzquotient: Von Null abziehen
Status: (Antwort) fertig Status 
Datum: 11:51 So 02.10.2005
Autor: Loddar

Hallo Slice!


> das hab ich ja versucht nur wenn man dann rückerchnet,
> kommt doch [mm]x²*x_0[/mm] raus und das kann ich nicht von [mm]-x_0^3[/mm]
> abziehen..

Aber Du kannst diesen Term $- [mm] x^2*x_0$ [/mm] von der Null abziehen ...


Schreibe Deine MBPolynomdivision mal etwas ausführlicher hin:

[mm]\left(x^3 \ \blue{+ 0*x^2*x_0 + 0*x*x_0^2} - x_0^3\right) \ : \ \left(x-x_0\right) \ = \ ...[/mm]


Klappt es nun?

Gruß
Loddar


Bezug
        
Bezug
Divergenzquotient: zu Aufgabe 1
Status: (Antwort) fertig Status 
Datum: 11:53 So 02.10.2005
Autor: Loddar

Hallo Slice!


> Die erste ist mit den Ableitungsregeln gemacht (Kettenregel
> und Reziprokenregel):
> [mm]f(x)=(\wurzel{x}+ \bruch{1}{\wurzel{x}})²[/mm]
>  
> Da komme ich nur bis:
> [mm]2*\wurzel{x}+\bruch{2}{\wurzel{x}}*(0,5x^{-0,5}+ \bruch{0,5x^{-0,5}}{x})[/mm]

[notok] Zwei Fehler ...

Zum einen fehlern hier die Klammern um den ersten Term, zum anderen Vorzeichenfehler in der Klammer:

[mm]f'(x) \ = \ \red{\left(}2*\wurzel{x}+\bruch{2}{\wurzel{x}}\red{\right)}*\left(0,5x^{-0,5}+\bruch{\red{-}0,5x^{-0,5}}{x}\right)[/mm]


Vielleicht wäre es auch etwas einfacher für den Ausdruck [mm] $\bruch{1}{\wurzel{x}}$ [/mm] , ihn erst umzuschreiben:

[mm] $\bruch{1}{\wurzel{x}} [/mm] \ = \ [mm] x^{-\bruch{1}{2}} [/mm] \ = \ [mm] x^{-0,5}$ [/mm]


Gruß
Loddar


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]