matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und ReihenDivergenz harmonische Reihe
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Folgen und Reihen" - Divergenz harmonische Reihe
Divergenz harmonische Reihe < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Divergenz harmonische Reihe: Mittels Quotientenkriterium
Status: (Frage) beantwortet Status 
Datum: 13:19 Fr 29.12.2006
Autor: Phoney

Hallo.

Ich weiß, dass die harmonische Reihe divergiert - aber kann man das gar nicht mit dem Quotientenkriterium zeigen?

Wir haben ja Konvergenz, wenn gilt

[mm] $\br{a_{n+1}}{a_n} [/mm] = q [mm] \le [/mm] 1$

Das [mm] a_n [/mm] der harmonischen Reihe ist ja [mm] \br{1}{n} [/mm]

Eingesetzt in die Formel

[mm] $\br{\br{1}{n+1}}{\br{1}{n}} =\br{n}{n+1}$ [/mm]

Polynomdivison liefert mir dann [mm] $n:(n+1)=1-\br{1}{n}$ [/mm]

Nun: [mm] $\lim_{n\rightarrow \infty}1-\br{1}{n}=1$ [/mm]

Also q=1 [mm] \le [/mm] 1

Nun muss ich ja, da q=1 ist, eine Fallunterscheidung machen (oder wie man das bezeichnet)

Aber für q=1 habe ich das noch nie gemacht.

Kann jemand helfen?

Danke,
grüße
Johann






        
Bezug
Divergenz harmonische Reihe: Antwort
Status: (Antwort) fertig Status 
Datum: 13:54 Fr 29.12.2006
Autor: baufux

Hallo!

Also Konvergenz gilt beim Quotientenkriterium nur, wenn:

[mm]\limes_{n\rightarrow\infty}\vmat{\bruch{a_{n+1}}{a_{n}}}\le q[/mm] < 1

Diesen Beweis bekommst du mit dem Qutientenkriterium nicht hin. Zum einen könntest du aber um das zu beweisen eine nicht Konvergente Minorante suchen oder du machs es wie folgt.

Zum Beweis der Divergenz:

Wenn man die Folge der Partialsummen [mm]s_{n}=\summe_{k=1}^{n}\bruch{1}{k}[/mm] betrachtet, muss diese Folge ja konvergieren, damit die Reihe konvergiert.

Wenn man nun das Cauchykriterium für Folgen auf die Folge der Partialsummen anwendet, muss man nur ein m und ein n mit N [mm] \le [/mm] n < m finden, sodass [mm] |s_{n}-s_{m}|<\epsilon [/mm] für alle [mm] \epsilon [/mm] > 0 nicht gilt.
Das muss natürlich für beliebig große N hinhauen.

Wenn man z.B. [mm] |s_{2n}-s_{n}| [/mm] betrachtet erhält man:
[mm] |s_{2n}-s_{n}| = \underbrace{\bruch{1}{n+1}+\bruch{1}{n+2}+\ldots+\bruch{1}{2n}}_{n-Summanden}\ge \underbrace{\bruch{1}{2n}+\bruch{1}{2n}+\ldots+\bruch{1}{2n}}_{n-Summanden}=\bruch{1}{2} [/mm] für beliebig große n.

Also ist das Cauchykriterium verletzt und daraus folgt die Divergenz der Folge der Partialsummen und damit die Divergenz der Reihe.

Bezug
                
Bezug
Divergenz harmonische Reihe: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:47 Fr 29.12.2006
Autor: Phoney

Hallo baufux.

Vielen Dank für deine ausführliche folgende Rechnung. Das hat mir beim Verständnis sehr geholfen. Danke dir!


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]