matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und ReihenDivergenz einer Reihe
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Folgen und Reihen" - Divergenz einer Reihe
Divergenz einer Reihe < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Divergenz einer Reihe: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:28 So 29.04.2012
Autor: kiwibox

Hallo,

ich muss zeigen, dass die Reihe konvergiert oder divergiert. Lt. Wolfram Alpha weiß ich, dass diese divergiert:
[mm] \summe_{n=1}^{\infty} \bruch{ 4^n*(n!)^2}{((2n)!} [/mm]

ich habe schon das Wurzel und das Quotientenkriterium ausprobiert, beides mal kommt =1 raus.
Eine gescheite Abschätzung, also eine Minorante, habe ich auch nicht gefunden.

Habt ihr  eine Idee, wie ich die Divergenz zeigen kann?

VG, kiwibox

        
Bezug
Divergenz einer Reihe: Quotientenkriterium
Status: (Antwort) fertig Status 
Datum: 19:35 So 29.04.2012
Autor: Loddar

Hallo kiwibox!


Wenn Du Dir das Quotientenkriterium ansiehst, und etwas zusammenfasst, wirst Du sehen, dass der Quotiententerm immer größer als 1 sein wird. Also ... ?


Gruß
Loddar


Bezug
                
Bezug
Divergenz einer Reihe: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:58 So 29.04.2012
Autor: kiwibox


> Wenn Du Dir das Quotientenkriterium ansiehst, und etwas
> zusammenfasst, wirst Du sehen, dass der Quotiententerm
> immer größer als 1 sein wird. Also ... ?

das Quotientenkriterium geht doch so:
[mm] |\bruch {a_{n+1}}{{a_n}}|=|\bruch{4^{n+1}*((n+1)!)^2}{(2n+2)!}*\bruch{(2n)!}{4^n*(n!)^2}|=|\bruch{4^{n}*4*(n+1)^2*(n!)^2*(2n)!}{(2n+2)*(2n+1)*(2n)!*4^n*(n!)^2}|=|\bruch{(n+1)^2*4\}{(2n+2)*(2n+1)}|= |\bruch{2*(n+1)}{2n+1} \to [/mm] 1 für n [mm] \to [/mm] infty

Und hier ist das Problem.
Oder was meintest du?


Bezug
                        
Bezug
Divergenz einer Reihe: Antwort
Status: (Antwort) fertig Status 
Datum: 23:48 So 29.04.2012
Autor: donquijote


> > Wenn Du Dir das Quotientenkriterium ansiehst, und etwas
> > zusammenfasst, wirst Du sehen, dass der Quotiententerm
> > immer größer als 1 sein wird. Also ... ?
>  
> das Quotientenkriterium geht doch so:
>  [mm]|\bruch {a_{n+1}}{{a_n}}|=|\bruch{4^{n+1}*((n+1)!)^2}{(2n+2)!}*\bruch{(2n)!}{4^n*(n!)^2}|=|\bruch{4^{n}*4*(n+1)^2*(n!)^2*(2n)!}{(2n+2)*(2n+1)*(2n)!*4^n*(n!)^2}|=|\bruch{(n+1)^2*4\}{(2n+2)*(2n+1)}|= |\bruch{2*(n+1)}{2n+1} \to[/mm]
> 1 für n [mm]\to[/mm] infty
>  
> Und hier ist das Problem.
> Oder was meintest du?
>  

Der Grenzwert ist 1, d.h. du kannst das Quotientenkriterium nicht "direkt" anwenden, aber aus
[mm] \bruch {a_{n+1}}{{a_n}}>1 [/mm] für alle n lässt sich auch die Divergenz folgern, denn ...

Bezug
                                
Bezug
Divergenz einer Reihe: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 00:04 Mo 30.04.2012
Autor: kiwibox

warum kann ich dann folgern, dass es divergiert?

Bezug
                                        
Bezug
Divergenz einer Reihe: Antwort
Status: (Antwort) fertig Status 
Datum: 01:09 Mo 30.04.2012
Autor: leduart

Hallo
[mm] a_{n+1}>a_n [/mm]
kann [mm] a_n [/mm] eine Nullfolge bilden? falls [mm] a_n\ne0 a_n>0 [/mm]
Gruss leduart

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]