matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und ReihenDivergenz bzw. Konvergenz
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Folgen und Reihen" - Divergenz bzw. Konvergenz
Divergenz bzw. Konvergenz < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Divergenz bzw. Konvergenz: Verständnisfrage
Status: (Frage) beantwortet Status 
Datum: 15:01 Mi 16.12.2009
Autor: hotsauce

Aufgabe
Für welche [mm] x\in\IR [/mm] konvergiert bzw. divergiert [mm] \summe_{k=1}^{\infty}\bruch{(2k)! (k)!}{(3k)!}*x^k [/mm] ???

Hi Leute,


Für das Quotientenkriterium gibts ja die Formel und ausgehend davon hab ich hier schon eingesetzt:

[mm] \bruch{2(k+1)! (k+1)!}{3(k+1)!}* \bruch{|x|^{k+1}}{|x|^{k}} *\bruch{(3k)!}{(2k)! (k)!} [/mm] (den letzten dieser Schritte verstehe ich nicht, wieso multipliziert man denn hier mit dem Kehrwert ?)

dann gehts weiter:

[mm] =\bruch{(2k+2)(2k+1)(k+1)}{(3k+3)(3k+2)(3k+1)}*|x|* \bruch{\bruch{1}{k^3}}{\bruch{1}{k^3}} [/mm]
weshalb wird denn mit [mm] {\bruch{1}{k^3}} [/mm] erweitert?...

[mm] ={\bruch{(2+\bruch{2}{k})(2+\bruch{1}{k})(1+\bruch{1}{k})}{(3+\bruch{3}{k})(3+\bruch{2}{k})(3+\bruch{1}{k})}} [/mm]

und zum allerletzten schritt... wie kommt der überhaupt zu stande? wurde da gekürzt, zumindest hat der prof das gesagt, nur wie ging er da vor?


        
Bezug
Divergenz bzw. Konvergenz: Antwort
Status: (Antwort) fertig Status 
Datum: 15:13 Mi 16.12.2009
Autor: schachuzipus

Hallo hotsauce,

> Für welche [mm]x\in\IR[/mm] konvergiert bzw. divergiert
> [mm]\summe_{k=1}^{\infty}\bruch{(2k)! (k)!}{(3k)!}*x^k[/mm] ???
>  Hi Leute,
>  
>
> Für das Quotientenkriterium gibts ja die Formel und
> ausgehend davon hab ich hier schon eingesetzt:
>
> [mm] $\bruch{\red{[}2(k+1)\red{]}! (k+1)!}{\red{[3}(k+1)\red{]}!}* \bruch{|x|^{k+1}}{|x|^{k}} *\bruch{(3k)!}{(2k)! (k)!}$ [/mm]

Hier sind doch Klammern falsch, darauf musst du peinlich genau achten, sonst wird alles sinnlos!

> (den letzten dieser Schritte verstehe ich nicht, wieso
> multipliziert man denn hier mit dem Kehrwert ?)

Mensch!

Es ist doch [mm] $\frac{a_{k+1}}{a_k}=a_{k+1}\cdot{}\frac{1}{a_k}$ [/mm]

>  
> dann gehts weiter:
>  
> [mm]=\bruch{(2k+2)(2k+1)(k+1)}{(3k+3)(3k+2)(3k+1)}*|x|* \bruch{\bruch{1}{k^3}}{\bruch{1}{k^3}}[/mm]
>  
> weshalb wird denn mit [mm]{\bruch{1}{k^3}}[/mm] erweitert?...

Das ist nicht notwendig, aber wenn du mal die Terme in Zähler und Nenner ausmultiplizierst, erhältst du in Zähler und Nenner Terme der Größenordnung [mm] $k^3$, [/mm] die du durch die Erweiterung wegbekommst (alternativ und weniger umständlich: kürzen)

>  
> [mm]={\bruch{(2+\bruch{2}{k})(2+\bruch{1}{k})(1+\bruch{1}{k})}{(3+\bruch{3}{k})(3+\bruch{2}{k})(3+\bruch{1}{k})}}[/mm]
>  
> und zum allerletzten schritt... wie kommt der überhaupt zu
> stande? wurde da gekürzt, zumindest hat der prof das
> gesagt, nur wie ging er da vor?

Nun, klammere aus jedem der Klammerterme mal k aus, was erhälst du dann?

Doch [mm] $k^3$ [/mm] in Zähler und Nenner. Die kannst du wegkürzen bzw. das umständlicher mit der obigen Erweiterung wegbekommen ...

LG

schachuzipus  


Bezug
                
Bezug
Divergenz bzw. Konvergenz: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:48 Mi 16.12.2009
Autor: hotsauce

ohh man... vielen dank... habs verstanden! ;-)...

ganz oben, wo ich mit dem kehrwert multipliziert habe, was passiert denn überhaupt mit diesem term?, der wurde niergends weiter aufgeführt...  ich meine der letzte schritt war dann folgender :

[mm] ={\bruch{(2+\bruch{2}{k})(2+\bruch{1}{k})(1+\bruch{1}{k})}{(3+\bruch{3}{k})(3+\bruch{2}{k})(3+\bruch{1}{k})}} [/mm] *|x|  für [mm] n\rightarrow\infty \bruch{4}{27} [/mm] *|x|  

was ist denn mit dem zähler passiert? oder wurde er einfach ausgelassen, weil wir wissen, dass dieser gegen unendlich konvergiert?

Bezug
                        
Bezug
Divergenz bzw. Konvergenz: Antwort
Status: (Antwort) fertig Status 
Datum: 15:56 Mi 16.12.2009
Autor: schachuzipus

Hallo nochmal,

> ohh man... vielen dank... habs verstanden! ;-)...
>
> ganz oben, wo ich mit dem kehrwert multipliziert habe, was
> passiert denn überhaupt mit diesem term?,

Nun, das ist der ein oder andere Zwischenschritt ausgelassen.

Die Lücken solltest du aber unbedingt selber füllen können.

Das sind wirklich Standardumformungen, die du beherrschen musst, das ist ne typische Klausuraufgabe!

Es ist [mm] $(n+1)!=(n+1)\cdot{}n!$ [/mm]

Damit zB. [mm] $(3(k+1))!=(3k+3)!=(3k+3)\cdot{}(3k+2)\cdot{}(3k+1)\cdot{}(3k)!$ [/mm]

Den Rest analog, dann ausgiebig kürzen und den Grenzübergang machen so wie im weiteren geschehen

> der wurde
> niergends weiter aufgeführt...  ich meine der letzte
> schritt war dann folgender :
>  
> [mm]={\bruch{(2+\bruch{2}{k})(2+\bruch{1}{k})(1+\bruch{1}{k})}{(3+\bruch{3}{k})(3+\bruch{2}{k})(3+\bruch{1}{k})}}[/mm]
> *|x|  für [mm]n\rightarrow\infty \bruch{4}{27}[/mm] *|x|  [ok]
>
> was ist denn mit dem zähler passiert? oder wurde er
> einfach ausgelassen, weil wir wissen, dass dieser gegen
> unendlich konvergiert?

Nein, da ist massivst gekürzt worden, vollziehe es mit den obigen Bemerkungen nach

Nun hast du gem. QK also (absolute) Kovnergenz für [mm] $|x|\cdot{}\frac{4}{27}<1$, [/mm] also [mm] $|x|<\frac{27}{4}$ [/mm]

Und entsprechend Divergenz für [mm] $|x|>\frac{27}{4}$ [/mm]

Bleiben die Randpunkte [mm] $|x|=\frac{27}{4}$, [/mm] also [mm] $x=\pm\frac{27}{4}$ [/mm] zu überprüfen, dazu sagt das QK ja nix.

Setze diese x-Werte in die Ausgangsreihe ein und untersuche auf Konvergenz.

LG

schachuzipus


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]