matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-AnalysisDivergenz
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Uni-Analysis" - Divergenz
Divergenz < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Divergenz: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 18:02 So 28.11.2004
Autor: mario.braumueller

Hallo,

ich hätte da mal ne Frage: Ne Lösung wär super, weil ich auch mitm Ansatz nicht weiterkomm:

------------------------------------------------------------------------------

Formulieren sie mit Hilfe der Quantorenschreibweise das Gegenteil der Konvergenzbedingung und zeigen sie damit, dass diese Folgen divergieren:


[mm] x_{n} [/mm] = r [mm] (-1)^{n} [/mm]  mit (r  [mm] \not= [/mm] 0)  ,    [mm] y_{n} [/mm] =  [mm] \bruch{n!}{ 2^{n}} [/mm]



Bitte um Hilfe


Danke im voraus.

        
Bezug
Divergenz: Antwort
Status: (Antwort) fertig Status 
Datum: 20:23 So 28.11.2004
Autor: Clemens

Hallo Mario!

Die Verneinung von solchen komplizierten Aussagen mit Quantoren folgt einem einfachen Schema (Sei P eine Aussage in Abhängigkeit von x):

[mm] \neg \exists x. P(x) \gdw \forall x. \neg P(x)[/mm]
[mm] \neg \forall x. P(x) \gdw \exists x. \neg P(x)[/mm]

Jetzt musst du noch wissen, dass folgende Vereinbarungen gelten (M Menge):

[mm] \forall x \in M. P(x) \gdw \forall x. (x \in M \to P(x))[/mm]
[mm] \exists x \in M. P(x) \gdw \exists x. (x \in M \wedge P(x))[/mm]

Das ist (1. Zeile) folgendermaßen zu interpretieren:
Anstatt zu sagen, dass:
Für alle Elemente von M gilt P(x).
sagt man:
Für alle mathematischen Objekte x gilt, dass sie, wenn sie Elemente von M sind, die Bedingung P(x) erfüllen.

Jetzt schreibe ich nochmal die Konvergenzbedingung für eine Folge auf:
[mm] \exists g \in \IR. \forall \varepsilon \in \IR^{+}. \exists N_{0} \in \IN. \forall n \in (N_{0}, N_{0} + 1, ...). |f(n) - g| < \varepsilon[/mm]
Die Punkte in der Schreibweise heißen immer, dass der Wirkungsbereich des Quantors maximal ist.
Wir verneinen nach den obigen Regeln:
[mm] \neg ( \exists g \in \IR. \forall \varepsilon \in \IR^{+}. \exists N_{0} \in \IN. \forall n \in (N_{0}, N_{0} + 1, ...). |f(n) - g| < \varepsilon)[/mm]
[mm] \gdw \neg ( \exists g.(g \in \IR \wedge( \forall \varepsilon.( \varepsilon \in \IR^{+} \to ( \exists N_{0}.( N_{0} \in \IN \wedge( \forall n.(n \in (N_{0}, N_{0} + 1, ...) \to (|f(n) - g| < \varepsilon)))))))))[/mm]
[mm] \gdw \forall g. \neg (g \in \IR \wedge( \forall \varepsilon.( \varepsilon \in \IR^{+} \to ( \exists N_{0}.( N_{0} \in \IN \wedge( \forall n.(n \in (N_{0}, N_{0} + 1, ...) \to (|f(n) - g| < \varepsilon))))))))[/mm]
Jetzt müssen wir die Tautologie [mm] \neg (A \wedge B) \gdw A \to \neg B [/mm]ausnützen:
[mm] \gdw \forall g.g \in \IR \to \neg ( \forall \varepsilon.( \varepsilon \in \IR^{+} \to ( \exists N_{0}.( N_{0} \in \IN \wedge( \forall n.(n \in (N_{0}, N_{0} + 1, ...) \to (|f(n) - g| < \varepsilon)))))))[/mm]
...
und so geht dass dann immer weiter, bis sich das  [mm] \neg [/mm] durch den ganzen logischen Ausdruck durchgefressen hat. Dann kannst du zur Übersichtlichkeit wieder die abkürzenden Schreibweise einführen. Viel Erfolg! Du kannst Zwischenergebnisse hier posten.

Dass die Folgen divergieren, kannst du bei 1. durch die Fallunterscheidung
g = r oder g = - r oder (g [mm] \not= [/mm] r [mm] \wedge [/mm] g [mm] \not= [/mm] -r)
zeigen und bei 2. durch die Konvergenz gegen unendlich.

Liebe Grüße
Clemens

Bezug
                
Bezug
Divergenz: ???
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:45 So 28.11.2004
Autor: mario.braumueller

Wenn ich mir das so anschau, dann ist das schon logisch, aber weiter komm ich trotzdem nicht.

Ich bin einfach zu blöd für Mathe.... Naja egal, trotzdem danke für die  Hilfe, muss ich morgen halt dann doch abschreiben :-)

Danke nochmal.

Gruß Mario

Bezug
                        
Bezug
Divergenz: Antwort
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:53 So 28.11.2004
Autor: Clemens

Hallo Mario!

Für Mathe ist niemand zu blöd. Man muss aber früh genug anfangen, sich damit auseinanderzusetzen; ansonsten kriegt man Probleme.

Wenn du willst, kannst du zu meiner Antwort eine Frage stellen. Ich kann sie heute nicht mehr beantworten, aber vielleicht jemand anderes.

Gruß
Clemens

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]