matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-AnalysisDistributionen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Uni-Analysis" - Distributionen
Distributionen < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Distributionen: Frage
Status: (Frage) beantwortet Status 
Datum: 22:49 Sa 01.01.2005
Autor: mando

Ich habe diese Frage auch in folgenden Foren auf anderen Internetseiten gestellt:
http://www.matheboard.de/thread.php?threadid=11151

Wir haben über die Ferien die Aufgabe:
Gibt es eine stetige Funktion u: [-1,1]->R ,so dass für alle stetigen Funktionen f: [-1,1]->R die Gleichung
[mm] \integral_{-1}^{1} {f(t)u(t) dt} = f(0)[/mm]
gilt?
gehabt und ich sitz schon die ganze Zeit daran, komm aber auf nichts vernünftiges. Das einzige worauf ich gekommen bin war:
[mm] \integral_{-1}^{1} {u(t) dt} = 1[/mm]

Kann mir jemand helfen? ein Ansatz oder ne Idee wärschon schön:-)

        
Bezug
Distributionen: Antwort
Status: (Antwort) fertig Status 
Datum: 23:29 Sa 01.01.2005
Autor: Stefan

Hallo mando!

Nein, es kann keine solche Funktion geben. Nur eine Distribution, die sogenannte Delta-Distribution, kann diese Bedingungen erfüllen.

Idee: Zeige, dass für alle [mm] $x_0 \in [/mm] [-1,1]$, [mm] $x_0 \ne [/mm] 0$, notwendigerweise [mm] $u(x_0)=0$ [/mm] gelten muss (und dann folgt mit Hilfe der bereits von dir hergeleiteten Identität, dass es eine solche Funktion nicht geben kann).

Wie macht man das? Nun, wähle dir ein [mm] $x_0 \ne [/mm] 0$ und nehme [mm] $u(x_0) \ne [/mm] 0$ an, oBdA [mm] $u(x_0)>0$. [/mm] Da $u$ stetig ist, gilt auch $u>0$ auf einer kleinen Umgebung [mm] $U(x_0)$, [/mm] die $0$ nicht enthält. Konstruiere nun eine stetige Funktion mit $f(x) > 0$ für alle $x [mm] \in U(x_0)$, [/mm] $f(x) [mm] \ge [/mm] 0$ für alle $x [mm] \in [/mm] [-1,1]$ und $f [mm] \equiv [/mm] 0$ außerhalb von [mm] $U(x_0)$, [/mm] insbesondere mit $f(0)=0$, etwa eine verstetigte Indikatorfunktion, die [mm] $U(x_0)$, [/mm] aber alle anderen Punkte (insbesondere $0$) nicht im Träger hat.

Dann kommt es locker und leicht hin. Melde dich wieder, wenn du Probleme damit hast. Die kriegen wir schon gelöst. :-)

Liebe Grüße
Stefan

Bezug
        
Bezug
Distributionen: Danke
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:38 So 02.01.2005
Autor: mando

Jo, danke für die schnelle Hilfe, ich denke ich habe es jetzt verstanden. Ich werd jetzt mal versuchen alles im Zusammenhang aufzuschreiben.

Mfg Matthias

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]