matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenSteckbriefaufgabenDiskussion 2
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Steckbriefaufgaben" - Diskussion 2
Diskussion 2 < Steckbriefaufgaben < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Steckbriefaufgaben"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Diskussion 2: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:43 Mo 17.05.2010
Autor: kushkush

Aufgabe
a) Der Graph der Funktion [mm] $f:y=\frac{x^{2}+ax+b}{x+c}$ [/mm] besitzt eine vertikale Asymptote für $x=1$, eine Extremalstelle für $x=3$ und schneidet die y-Achse bei $-10$. Bestimme die Parameter a,b und c und diskutiere die Funktion (Definitionsbereich, Asymptoten, Symmetrie, Nullstelle, Extremal- und Wendepunkte, Graph).  

Hallo,

vertikale Asymptote heisst ja dass es eine Polstelle gibt, und die erreicht wird wenn $x=1$ eingesetzt wird  also ist $c=-1$.

Aus den anderen beiden Bedingungen folgt:

$f'(3)=0$ und $f(0)=-10$

also: [mm] $\frac{0^{2}+a\cdot 0 +b}{0-1}$ [/mm] --> b=10

und:

$f'(x)= [mm] \frac{(x-1)(2x-a)-(x^{2}+ax+10)}{(x-1)^{2}}$ [/mm]
$f'(3)=0$
$a = [mm] -\frac{7}{5}$ [/mm]


die Lösung gibt für b allerdings $-10$ und für a dementsprechend auch etwas anderes raus...

wo liegt mein Fehler?


Ich habe diese Frage in keinem anderen Forum gestellt und bin für jede Antwort dankbar.



        
Bezug
Diskussion 2: Antwort
Status: (Antwort) fertig Status 
Datum: 19:58 Mo 17.05.2010
Autor: pythagora

hi,
aussagekräftige überschrift^^

> a) Der Graph der Funktion [mm]f:y=\frac{x^{2}+ax+b}{x+c}[/mm]
> besitzt eine vertikale Asymptote für [mm]x=1[/mm], eine
> Extremalstelle für [mm]x=3[/mm] und schneidet die y-Achse bei [mm]-10[/mm].
> Bestimme die Parameter a,b und c und diskutiere die
> Funktion (Definitionsbereich, Asymptoten, Symmetrie,
> Nullstelle, Extremal- und Wendepunkte, Graph).
> Hallo,
>  
> vertikale Asymptote heisst ja dass es eine Polstelle gibt,
> und die erreicht wird wenn [mm]x=1[/mm] eingesetzt wird  also ist
> [mm]c=-1[/mm].
>
> Aus den anderen beiden Bedingungen folgt:
>  
> [mm]f'(3)=0[/mm] und [mm]f(0)=-10[/mm]
>  
> also: [mm]\frac{0^{2}+a\cdot 0 +b}{0-1}[/mm] --> b=10

nicht b=-10 einsetzen sondern den von dir geschriebenen term gleich -10 setzen... du brauchst ja f(0)=-10...


LG
pythagora

Bezug
        
Bezug
Diskussion 2: Antwort
Status: (Antwort) fertig Status 
Datum: 20:17 Mo 17.05.2010
Autor: Blech

Hi,

> also: [mm]\frac{0^{2}+a\cdot 0 +b}{0-1}[/mm] --> b=10

b=10 stimmt.

>  
> und:
>
> [mm]f'(x)= \frac{(x-1)(2x-a)-(x^{2}+ax+10)}{(x-1)^{2}}[/mm]

Die Ableitung stimmt aber nicht. Es muß $(2x+a)$ sein.

ka warum die Musterlösung -10 sagt. [mm] $f(0)=\frac{b}{c}$, [/mm] und c ist klarerweise -1

ciao
Stefan
  


Bezug
                
Bezug
Diskussion 2: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:50 Mo 17.05.2010
Autor: kushkush

Dankeschön pythagora und Blech!!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Steckbriefaufgaben"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]