matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenMatlabDiskretisierung einer Gleichun
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Matlab" - Diskretisierung einer Gleichun
Diskretisierung einer Gleichun < Matlab < Mathe-Software < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Matlab"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Diskretisierung einer Gleichun: Matlab
Status: (Frage) beantwortet Status 
Datum: 00:02 Mo 21.06.2010
Autor: ftm2037

Aufgabe
Advections-Diffusionsgleichung:

[mm] u_{t} [/mm] = [mm] a*u_{x} [/mm] + [mm] \nu*u_{xx} [/mm]


Hallo,

wie kann ich in Matlab diese Gleichung im Ort und Zeit Mit finiten Differenzenverfahren diskretisieren?

Viele Grüße



"Ich habe diese Frageh in keinen andren Foren gestellt."

        
Bezug
Diskretisierung einer Gleichun: Antwort
Status: (Antwort) fertig Status 
Datum: 18:15 Di 22.06.2010
Autor: max3000

Hallo..

Die Aufgabenbeschreibung ist nicht eindeutig.
Du kannst die auf verschiedene Varianten diskretisieren.
Dazu musst du natürlich die Ableitungen durch Differenzenquotienten ersetzen und dafür gibt es viele verschiedene Möglichkeiten.

Also das [mm] $\partial_t [/mm] u$ kannst du ja ersetzen mit

[mm] $\partial_t u\approx\bruch{u_i^{n+1}-u_i^n}{\Delta t}$ [/mm]
Bei den Ortsableitungen kannst du die Funktionswerte entweder auf dem alten Zeitschritt n auswerten (explizites Verfahren) oder komplett auf dem neuen n+1 (vollimplizites Verfahren) oder zur Hälfte auf dem alten und zur anderen Hälfte auf dem neuen (Crank-Nicolson).

Am einfachsten sind erstmal explizite Verfahren. Die sind zwar sehr unstabil, aber man muss keine Gleichungssysteme lösen.

Also zum Beispiel:
- Erste Ableitung mit zentraler Differenz
[mm] $\partial_x u=\bruch{u_{i+1}^n-u_{i-1}^n}{2\Delta x}$ [/mm]
-Zweite Ableitung mit der Standardapproximation für 2. Ableitungen
[mm] $\partial_{xx} u=\bruch{u_{i+1}^n-2u_i^n+u_{i-1}^n}{\Delta x^2}$ [/mm]

Das ganze einsetzen und nach [mm] u^{n+1}_i [/mm] umstellen und in Matlab eintippen.

Die Aufgabe ist nicht komplett. Es fehlen noch Anfangswerte, Randbedingungen und das Gebiet auf dem du rechnen sollst.

Die Randwerte musst du dann natürlich mit in deine explizite Darstellung für das neue [mm] u_i^{n+1} [/mm] einbauen. Darum in Randnähe etwas aufpassen.

Grüße

Max




Bezug
                
Bezug
Diskretisierung einer Gleichun: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 00:40 Mi 23.06.2010
Autor: ftm2037

Danke für die Erklärung! Ich werde das so versuchen und gegebenenfalls mich wieder melden.

Grüße

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Matlab"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]