matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Analysis-SonstigesDiskrete Metrik
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Uni-Analysis-Sonstiges" - Diskrete Metrik
Diskrete Metrik < Sonstiges < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Diskrete Metrik: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 10:30 Fr 25.04.2008
Autor: skydyke

Aufgabe
Es sei X eine nicht leere Menge, versehen mit der diskreten Metrik d. Zeigen Sie
a)eine Folge in X konvergiert genau dann, wenn es eine Stelle N [mm] \in \IN, [/mm] aber der sie konstant ist (d.h. [mm] x_n [/mm] = [mm] x_N [/mm] für alle  n [mm] \ge [/mm] N)

b)Charakteresieren sie analog die Cauchyfolgen und zeigen sie, dass (X,d) vollständig ist.  

Hallo,

bei a muss ich doch versuchen [mm] \varepsilon [/mm] - Kugeln zu finden für die gilt dass [mm] x_n \subseteq B_\varepsilon(x)oder? [/mm] und dieser ausdruck muss dann irgendwann konstant sein, aber wie soll man das denn zeigen? da hab ich echt kein plan.

bei b weiß ich eigentlich nur das das soviel bedeutet wie das jede cauchyfolge konvergeiert. aber da weiß ich trotzdem überhaupt keinen ansatz.
bitte kann mir da einer weiterhelfen???

vielen dank

sabrina

        
Bezug
Diskrete Metrik: Antwort
Status: (Antwort) fertig Status 
Datum: 22:03 Fr 25.04.2008
Autor: rainerS

Hallo sabrina!

> Es sei X eine nicht leere Menge, versehen mit der diskreten
> Metrik d. Zeigen Sie
>  a)eine Folge in X konvergiert genau dann, wenn es eine
> Stelle N [mm]\in \IN,[/mm] aber der sie konstant ist (d.h. [mm]x_n[/mm] = [mm]x_N[/mm]
> für alle  n [mm]\ge[/mm] N)
>  
> b)Charakteresieren sie analog die Cauchyfolgen und zeigen
> sie, dass (X,d) vollständig ist.
> Hallo,
>  
> bei a muss ich doch versuchen [mm]\varepsilon[/mm] - Kugeln zu
> finden für die gilt dass [mm]x_n \subseteq B_\varepsilon(x)oder?[/mm]
> und dieser ausdruck muss dann irgendwann konstant sein,
> aber wie soll man das denn zeigen? da hab ich echt kein
> plan.

Überlege dir, wie die [mm] $\varepsilon$-Kugeln [/mm] überhaupt aussehen.

Tipp: Unterscheide die Fälle [mm] $\varepsilon\ge1$ [/mm] und [mm] $\varepsilon< [/mm] 1$.

> bei b weiß ich eigentlich nur das das soviel bedeutet wie
> das jede cauchyfolge konvergeiert. aber da weiß ich
> trotzdem überhaupt keinen ansatz.

Du musst dir zuerst überlegen, wie eine Cauchyfolge aussieht. Es muss ja für ein gegebenes [mm] $\varepsilon>0$ [/mm] ein [mm] $N\in\IN$ [/mm] geben, sodass

[mm] d(x_n,x_m) <\varepsilon [/mm] für $n,m>N$ .

Betrachte wieder den Fall [mm] $\varepsilon< [/mm] 1$!

Viele Grüße
   Rainer

Bezug
                
Bezug
Diskrete Metrik: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 09:02 Mo 28.04.2008
Autor: skydyke

Also die [mm] \varepsilon [/mm] - kugel sieht so aus:

[mm] \varepsilon [/mm] < 1, da ist die kugel offen, da 1 nicht erreicht wird und wir in der diskreten metrik sind

[mm] \varepsilon [/mm] > 1, hier ist die Kugel die gesamte Folge

wie mach ich denn jetzt weiter? wie zeig ich denn jetzt das [mm] x_n [/mm] < [mm] B_\varepsilon(x) [/mm] ist? welche [mm] \varepsilon-kugel [/mm] muss ich denn dazu betrachten, die > 1, da die gesamte folge?


zu b) hab ich mir überlegt:

[mm] x_n \subseteq [/mm] X ist Cauchyfolge, da [mm] \varepsilon [/mm] > 0 existiert ein N [mm] \in \IN: d(x_n,x_m)< \varepsilon [/mm] für alle n,m > N und dies gilt, da
[mm] \varepsilon [/mm] <1 ist offene Kugel und erreicht nicht den Abstand 1 der in der diskreten Mege gegeben ist
=> [mm] d(x_n,x_m) [/mm] < [mm] \varepsilon [/mm]   für alle n,m > N

Bezug
                        
Bezug
Diskrete Metrik: Antwort
Status: (Antwort) fertig Status 
Datum: 22:53 Mo 28.04.2008
Autor: rainerS

Hallo!

> Also die [mm]\varepsilon[/mm] - kugel sieht so aus:
>  
> [mm]\varepsilon[/mm] < 1, da ist die kugel offen, da 1 nicht
> erreicht wird und wir in der diskreten metrik sind

Ich bin mir nicht sicher, was du meinst. Welche Punkte liegen in dieser Kugel.

>  
> [mm]\varepsilon[/mm] > 1, hier ist die Kugel die gesamte Folge

Nein, das stimmt nicht. Was ist die Menge aller Punkte für die [mm] $d(x,y)<\varepsilon$ [/mm] mit [mm] $\varepsilon \ge [/mm] 1$ ist?
(Diese Menge ist auch offen.)

> wie mach ich denn jetzt weiter? wie zeig ich denn jetzt das
> [mm]x_n[/mm] < [mm]B_\varepsilon(x)[/mm] ist? welche [mm]\varepsilon-kugel[/mm] muss
> ich denn dazu betrachten, die > 1, da die gesamte folge?

Welcher der beiden Fälle [mm] $\varepsilon [/mm] < 1$ und [mm] $\varepsilon \ge [/mm] 1$ ist für die Konvergenz interessant?

> zu b) hab ich mir überlegt:
>  
> [mm]x_n \subseteq[/mm] X ist Cauchyfolge, da [mm]\varepsilon[/mm] > 0
> existiert ein N [mm]\in \IN: d(x_n,x_m)< \varepsilon[/mm] für alle
> n,m > N und dies gilt, da
> [mm]\varepsilon[/mm] <1 ist offene Kugel und erreicht nicht den
> Abstand 1 der in der diskreten Mege gegeben ist
>  => [mm]d(x_n,x_m)[/mm] < [mm]\varepsilon[/mm]   für alle n,m > N

Aber was bedeutet es für [mm] $x_n$ [/mm] und [mm] $x_m$, [/mm] wenn [mm]d(x_n,x_m) < \varepsilon <1[/mm] ist?

Viele Grüße
   Rainer

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]