Diskrete Fouriertransformation < Numerik < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 16:29 Mo 27.07.2020 | Autor: | Steve96 |
Guten Nachmittag an alle
Ich versuche die ganze Zeit eine (bestimmt simple) Gleichung zu zeigen, aber irgendwo habe ich einen kleinen Fehler eingebaut,den ich nicht sehe und dafür sorgt, dass ich nicht zum gewünschten Ergebnis komme.
Ich beschäftige mich mit folgendem Satz:
Zu gegebenen zahlen [mm] $y_{0}, \ldots, y_{n} \in \mathbb{C}$ [/mm] gibt es genau eine Funktion der Gestalt $(i = [mm] \sqrt{- 1})$.
[/mm]
[mm] $t^{\*}_{n}(x) [/mm] = [mm] \sum\limits_{k = 0}^{n} c_{k} e^{ikx}$, [/mm] welche den Interpolationsbedingungen [mm] $t^{\*}_{n}(x_{j}) [/mm] = [mm] y_{j}\quad [/mm] (j = 0, [mm] \ldots, [/mm] n)$ genügt. Die Koeffizienten sind bestimmt durch [mm] $c_{k} [/mm] = [mm] \frac{1}{n + 1} \sum\limits_{j = 0}^{n} y_{j} e^{- ij x_{k}}, \quad [/mm] k = 0, [mm] \ldots, [/mm] n$.
Ich will mich davon überzeugen, dass [mm] $t^{\*}_{n}(x_{j}) [/mm] = [mm] y_{j}\quad [/mm] (j = 0, [mm] \ldots, [/mm] n)$ gilt.
Mein Versuch:
[mm] $t_{n}^{\*}(x_{j} [/mm] )= [mm] \sum\limits_{k = 0}^{n} c_{k} e^{ikx_{j}} [/mm] = [mm] \sum\limits_{k = 0}^{n} \left ( \frac{1}{n + 1} \sum\limits_{j = 0}^{n} y_{j} e^{- i j x_{k}} \right [/mm] ) [mm] e^{ikx_{j}} [/mm] = [mm] \sum\limits_{k = 0}^{n} \left ( \frac{1}{n + 1} \sum\limits_{j = 0}^{n} y_{j} e^{- i j \frac{2 \pi k }{n + 1}} \right [/mm] ) [mm] e^{ik \frac{2 \pi j }{n + 1}} [/mm] = [mm] \sum\limits_{k = 0}^{n} \left ( \frac{1}{n + 1} \sum\limits_{j = 0}^{n} y_{j} e^{ - \frac{2 \pi k ij }{n + 1}} \right [/mm] ) [mm] e^{ \frac{2 \pi k i j }{n + 1}} [/mm] = [mm] \sum\limits_{k = 0}^{n} \left ( \frac{1}{n + 1} \sum\limits_{j = 0}^{n} y_{j} e^{ \frac{2 \pi k i j - 2 \pi k ij }{n + 1}} \right [/mm] ) = [mm] \sum\limits_{k = 0}^{n} \left ( \frac{1}{n + 1} \sum\limits_{j = 0}^{n} y_{j} \right [/mm] ) = [mm] \frac{1}{n + 1} \sum\limits_{k = 0}^{n} \sum\limits_{j = 0}^{n} y_{j} [/mm] = [mm] \frac{1}{n + 1} \cdot [/mm] (n + 1) [mm] \sum\limits_{j = 0}^{n} y_{j} [/mm] = [mm] \sum\limits_{j = 0}^{n} y_{j} [/mm] $
Aber wie man sieht, passt das nicht ganz und ich verstehe nicht, wo mein Fehler liegt.
Über eine Antwort würde ich mich freuen.
Gruß,
Steve
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 20:59 Di 28.07.2020 | Autor: | chrisno |
Im Detail kann ich es mir nicht anschauen, aber ich meine, dass Du eine Deltafunktion übersehen hast.
https://de.wikipedia.org/wiki/Kronecker-Delta Summendarstellung
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 17:46 Mo 03.08.2020 | Autor: | Infinit |
Hallo steve,
von Chrisno kam schon der Tipp mit der Deltafunktion und ich habe mir noch mal die Aufgabe aufgeschrieben mit den Laufvariablen, die bei Dir etwas durcheinander gekommen sind, so wie ich das sehe.
Allgemein haben wir eine Transformierte [mm] t_n(j) [/mm] an einem der Stützpunkte, von denen es [mm] n+1 [/mm] gibt:
[mm] t(j) = \sum_{k=0}^n c_k e^{\bruch{2 \pi i kj}{n+1}} [/mm] mit den Fourierkoeffizienten
[mm] c_k = \bruch{1}{n+1} \sum_{j=0}^n y_j e^{-\bruch{2 \pi i k j}{n+1}} [/mm]
Jetzt suchen wir uns den Stützpunkt m heraus und an dem gilt:
[mm] t(m) = \sum_{k=0}^n c_k e^{\bruch{2 \pi i km}{n+1}}[/mm]
Wenn man jetzt, so wie Du es gemacht hast, die Definitionen einsetzt, bekommt man:
[mm] t(m) = \sum_{k=0}^n \bruch{1}{n+1} \sum_{j=0}^n y_j e^{-\bruch{2 \pi i k j}{n+1}} \cdot e^{\bruch{2 \pi i k m}{n+1}}= \sum_{j=0}^n \bruch{1}{n+1} y_j \sum_{k=0}^n e^{\bruch{2 \pi i k (m-j)}{n+1}} [/mm]
Jetzt nehmen wir uns den Term mit dem 2. Summanden vor und schauen mal nach, welche Werte der annehmen kann. Hier kommt für [mm] m = j [/mm] die Deltafunktion ins Spiel mit
[mm] \sum_{k=0}^n e^{\bruch{2 \pi i k (m-j)}{n+1}} = (n+1) \delta_{mj} [/mm], indem für alle Werte [mm] m \neq j [/mm] eine glatte Null rauskommt (P.S.: Kannst Du auch ausrechnen, das ist eine endliche geometrische Reihe mit einem Summenwert von 0, da dann im Zähler ein Wert [mm] 1 - \cos(2\pi(m-j)) - \sin (2 \pi (m-j)) [/mm] steht)
Damit bleibt von dem langen Ausdruck nicht mehr sehr viel übrig:
[mm] t (m) = \sum_{j=0}^n \bruch {1}{n+1} \cdot (n+1) y_j \delta_{mj} = y_m [/mm]
Ich gebe gerne zu, man kommt da irre schnell mit den Variablen durcheinander.
Viele Grüße,
Infinit
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 00:44 Fr 07.08.2020 | Autor: | Steve96 |
Guten Morgen!
Ich bitte um Entschuldigung, dass ich mich so lange nicht gemeldet habe. Mir war es aber nicht möglich, mich mit den Antworten zu beschäftigen, da ich die ganze letzte Woche zu tun hatte (Umzug, Arbeit).
Ich lese mir eure Antworten heute noch durch und melde mich, falls noch irgendwas unklar ist!
Ich bedanke mich herzlich bei euch beiden.
Freundliche Grüße,
Steve
|
|
|
|