matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLogikDisjunktive Normalform
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Logik" - Disjunktive Normalform
Disjunktive Normalform < Logik < Logik+Mengenlehre < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Logik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Disjunktive Normalform: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:11 Mi 03.11.2010
Autor: Zelos

Aufgabe
Überführen Sie die folgende boolsche Funktion schrittweise in eine kanonische disjunktive Normalform:

f(a,b,c,d) = a [mm] \wedge [/mm] (c [mm] \vee [/mm] d) [mm] \wedge \neg(b \wedge [/mm] ac)

Ich habe bereits ein De Morgan.-Gesetz angewendet und den linken Teil ausmultipliziert, aber dann bekomme ich das hier und weiß einfach nicht, was ich da noch kürzer machen könnte:

((a [mm] \wedge [/mm] c) [mm] \vee [/mm] (a [mm] \wedge [/mm] d)) [mm] \wedge (\neg [/mm] b [mm] \vee \neg [/mm] a [mm] \vee \neg [/mm] c)

Ist es bis dahin richtig?
Und wenn ja, wie geht's weiter? Wenn ich nochmal ausmultipliziere, wenn das überhaupt geht, krieg ich irgendwas über eine halbe Seite und danach würd's auch nicht weitergehen.
Weiß da jemand weiter?

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Disjunktive Normalform: Antwort
Status: (Antwort) fertig Status 
Datum: 18:04 Mi 03.11.2010
Autor: schachuzipus

Hallo Daniel,


> Überführen Sie die folgende boolsche Funktion
> schrittweise in eine kanonische disjunktive Normalform:
>  
> f(a,b,c,d) = a [mm]\wedge[/mm] (c [mm]\vee[/mm] d) [mm]\wedge \neg(b \wedge[/mm] ac)
>  Ich habe bereits ein De Morgan.-Gesetz angewendet und den
> linken Teil ausmultipliziert, aber dann bekomme ich das
> hier und weiß einfach nicht, was ich da noch kürzer
> machen könnte:
>  
> ((a [mm]\wedge[/mm] c) [mm]\vee[/mm] (a [mm]\wedge[/mm] d)) [mm]\wedge (\neg[/mm] b [mm]\vee \neg[/mm] a  [mm]\vee \neg[/mm] c)
>  
> Ist es bis dahin richtig?

Ja!

>  Und wenn ja, wie geht's weiter? Wenn ich nochmal
> ausmultipliziere, wenn das überhaupt geht, krieg ich
> irgendwas über eine halbe Seite und danach würd's auch
> nicht weitergehen.
>  Weiß da jemand weiter?

Distributiv ausmultiplizieren ist aber genau richtig.

Ich schreibe statt [mm]x\wedge y[/mm] lieber [mm]x\cdot{}y[/mm] oder [mm]xy[/mm] und statt [mm]x\vee y[/mm] dann [mm]x+y[/mm] und

[mm]\neg x[/mm] als [mm]\overline{x}[/mm]


Du hast [mm](ac+ad)\cdot{}(\overline a+\overline b+\overline c)[/mm]

Das ist [mm]a\overline ac+a\overline bc+ac\overline c+a\overline ad+a\overline bd+a\overline cd[/mm]

Was ist denn [mm]x\overline x[/mm], also [mm]x\wedge \neg x[/mm]

Welche Rolle spielt es also in einer Disjunktion?

>  
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.

Gruß

schachuzipus


Bezug
                
Bezug
Disjunktive Normalform: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:00 Mi 03.11.2010
Autor: Zelos

[mm] x\overline{x} [/mm] ist 0 bzw. eine falsche Aussage, denn gleichzeitig wahr und falsch kann etwas ja schlecht sein.

Demnach bleiben nur folgende Terme über:

[mm] a\overline{b}c [/mm] + [mm] a\overline{c}d [/mm] + [mm] a\overline{b}d [/mm]

Wenn ich die dann jetzt in die kanonische disjunktive Normalform bringen will, füg ich nach dem Absorptionsgesetz die fehlenden Terme hinzu und komme schließlich auf:

[mm] a\overline{bc}d [/mm] + [mm] a\overline{b}c\overline{d} [/mm] + [mm] a\overline{b}cd [/mm] +  [mm] ab\overline{c}d [/mm]

Wenn das richtig ist, habe ich es verstanden, denke ich.

Bezug
                        
Bezug
Disjunktive Normalform: Antwort
Status: (Antwort) fertig Status 
Datum: 19:16 Mi 03.11.2010
Autor: schachuzipus

Hallo nochmal,


> [mm]x\overline{x}[/mm] ist 0 bzw. eine falsche Aussage, denn
> gleichzeitig wahr und falsch kann etwas ja schlecht sein.

Genau!

>  
> Demnach bleiben nur folgende Terme über:
>  
> [mm]a\overline{b}c[/mm] + [mm]a\overline{c}d[/mm] + [mm]a\overline{b}d[/mm]
>  
> Wenn ich die dann jetzt in die kanonische disjunktive
> Normalform bringen will, füg ich nach dem
> Absorptionsgesetz die fehlenden Terme hinzu und komme
> schließlich auf:
>  
> [mm]a\overline{bc}d[/mm] + [mm]a\overline{b}c\overline{d}[/mm] +  [mm]a\overline{b}cd[/mm] +  [mm]ab\overline{c}d[/mm]

[daumenhoch]

Das sieht gut aus!

>
> Wenn das richtig ist, habe ich es verstanden, denke ich.

Gruß

schachuzipus


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Logik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]