matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra SonstigesDisjunkte vereinigung
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Lineare Algebra Sonstiges" - Disjunkte vereinigung
Disjunkte vereinigung < Sonstiges < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Disjunkte vereinigung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:42 So 02.11.2008
Autor: Fuchsschwanz

Hallo!
Ich will zeigen, dass [mm] A=\bigcup_{[x]\in A/\sim}^{.} [/mm] [x] ist.

Dabei bekomme ich A [mm] \subseteq \bigcup_{[x]\in A/\sim}^{.} [/mm] [x] auch hin, aber die andere Seite krieg ich nicht hin. Jemand nen Tipp?

Ich weiß, dass für x,y [mm] \in [/mm] A gilt [x]=[y] oder [mm] [x]\cap [/mm] [y]= [mm] \emptyset [/mm]

Hilft mir das irgendwie dabei?

        
Bezug
Disjunkte vereinigung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:46 So 02.11.2008
Autor: Genius-at-work

´Kannst du das bitte lesbar machen?

Bezug
        
Bezug
Disjunkte vereinigung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 07:11 Mo 03.11.2008
Autor: Fuchsschwanz

hmmm...folgt das vllt. daraus, dass ich weiß, dass die disjunkte Vereinigung alle Äquivalenzklassen der Menge der Äquivalenzklassen enthält und in den Äquivalenzklassen nur Elemente aus A sind?

Bezug
                
Bezug
Disjunkte vereinigung: Antwort
Status: (Antwort) fertig Status 
Datum: 09:07 Mo 03.11.2008
Autor: andreas

hi

> und in den Äquivalenzklassen nur
> Elemente aus A sind?

genau daraus folgt das. es ist doch für jedes $x [mm] \in [/mm] A$ : $[x] = [mm] \{y \in A : y \sim x\} \subseteq [/mm] A$. damit ist die gesamte vereinigung dann aber natürlich auch eine teilmenge von $A$.


grüße
andreas


Bezug
                        
Bezug
Disjunkte vereinigung: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 12:27 Mo 03.11.2008
Autor: Fuchsschwanz

danke!

für die andere Seite würde ich nun sagen:

x sei Element [x] und Element A, dann ist x Element [mm] A/\sim, [/mm] und damit Teil der disjunkten Vereinigung

Richtig?

Bezug
                                
Bezug
Disjunkte vereinigung: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:21 Mi 05.11.2008
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
        
Bezug
Disjunkte vereinigung: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 18:14 Mi 05.11.2008
Autor: Fuchsschwanz

Hallo!

Ich habe die folgenden Sätze:

1) Seien x,y [mm] \in [/mm] A. Dann gilt [x]=[y] oder [mm] [x]\cap [y]=\emptyset [/mm]

2) A= [mm] \bigcup_{[x]\in A~}^{.}[x] [/mm]

Nun habe ich als Beweis für das zweite mitgeschrieben, dass die "Richtung"
[mm] \bigcup_{[x]\in A~}^{.}[x]\subseteq [/mm] A, aus dem 1. Satz folgt. Dies erschließt sich mir nicht...finde es eigentlich recht trivial, dass alle Äquivalenzklassen zusammen A ergeben, aber was hat das mit dem ersten Satz zu tun?

die andere Richtung:

Da habe ich bekommen, dass dies daraus folgt, dass [mm] x\in [/mm] [x] ist....dies liegt daran, dass jedes Element von A in einer Äquivalenzklasse enthalten ist?


Bezug
                
Bezug
Disjunkte vereinigung: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:24 Fr 07.11.2008
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]