matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenDiskrete MathematikDisjunkte Teilmengen
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Diskrete Mathematik" - Disjunkte Teilmengen
Disjunkte Teilmengen < Diskrete Mathematik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Diskrete Mathematik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Disjunkte Teilmengen: Hi
Status: (Frage) beantwortet Status 
Datum: 19:15 So 05.05.2013
Autor: looney_tune

Aufgabe
zeigen sie: für reele Zahlen [mm] x_{1},...x_{n}>0 [/mm] gilt
[mm] \summe_{\sigma \in S_{n}}^{} \produkt_{i=1}^{n} \bruch{x_{i}}{x_{\sigma(i)}+...+x_{\sigma(n)}}=1 [/mm]

Also ich denke hier sollte ich die Induktion anwenden, jedoch komme ich nich sehr weit damit.

I.A. n=1: 1=1 passt
I.V. [mm] \summe_{\sigma \in S_{n}}^{} \produkt_{i=1}^{n} \bruch{x_{i}}{x_{\sigma(i)}+...+x_{\sigma(n)}}=1 [/mm]

I.S. n+1 : [mm] \summe_{\sigma \in S_{n}}^{} \produkt_{i=1}^{n+1} \bruch{x_{i}}{x_{\sigma(i)}+...+x_{\sigma(n)}}=1 [/mm]

so würde ich anfangen, aber ich komme nicht weiter, kann mir jemand weiter helfen?

        
Bezug
Disjunkte Teilmengen: Antwort
Status: (Antwort) fertig Status 
Datum: 11:59 Mo 06.05.2013
Autor: felixf

Moin!

> zeigen sie: für reele Zahlen [mm]x_{1},...x_{n}>0[/mm] gilt
>  [mm]\summe_{\sigma \in S_{n}}^{} \produkt_{i=1}^{n} \bruch{x_{i}}{x_{\sigma(i)}+...+x_{\sigma(n)}}=1[/mm]
>  
> Also ich denke hier sollte ich die Induktion anwenden,

Ja.

> jedoch komme ich nich sehr weit damit.
>  
> I.A. n=1: 1=1 passt
>  I.V. [mm]\summe_{\sigma \in S_{n}}^{} \produkt_{i=1}^{n} \bruch{x_{i}}{x_{\sigma(i)}+...+x_{\sigma(n)}}=1[/mm]
>  
> I.S. n+1 : [mm]\summe_{\sigma \in S_{n}}^{} \produkt_{i=1}^{n+1} \bruch{x_{i}}{x_{\sigma(i)}+...+x_{\sigma(n)}}=1[/mm]

Erstmal: so ist es schlichtweg falsch, da du einige Vorkommnisse von $n$ nicht durch $n + 1$ ersetzt hast.

> so würde ich anfangen, aber ich komme nicht weiter, kann
> mir jemand weiter helfen?

Du musst die Summe ueber alle Partitionen [mm] $\sigma \in S_{n+1}$ [/mm] aufteilen in $n + 1$ verschiedene Summen. Und zwar je nachdem, was [mm] $\sigma(1)$ [/mm] ist. Aus dem Produkten zu dieser Summe kannst du dann [mm] $x_{\sigma(1)} [/mm] / [mm] (x_1 [/mm] + [mm] \dots [/mm] + [mm] x_{n+1})$ [/mm] ausklammern, womit du sowas wie [mm] $\sum_{i=1}^{n+1} \frac{x_i}{x_1 + \dots + x_{n+1}} \sum_{\sigma \in S_{n+1} \atop \sigma(1) = i} \prod_{j=1 \atop i \neq j}^{n+1} x_j \cdot \prod_{j=2}^{n+1} \frac{1}{x_{\sigma(j)} + \dots + x_{\sigma(n+1)}}$ [/mm] erhaelst. Du musst dir jetzt bewusst machen, dass die Summe [mm] $\sum_{\sigma \in S_{n+1} \atop \sigma(1) = i} \prod_{j=1 \atop i \neq j}^{n+1} x_j \cdot \prod_{j=2}^{n+1} \frac{1}{x_{\sigma(j)} + \dots + x_{\sigma(n+1)}}$ [/mm] gerade so eine wie in der Induktionsvoraussetzung ist. Deswegen ist ihr Wert gleich 1. Wenn du das einsetzt, kommst du auf das richtige Ergebnis.

Hier hab ich jetzt allerdings einen Haufen Zwischenschritte weggelassen, die du noch richtig ausformulieren musst.

LG Felix


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Diskrete Mathematik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]