matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenPartielle DifferentialgleichungenDirichlet Neumann
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Partielle Differentialgleichungen" - Dirichlet Neumann
Dirichlet Neumann < partielle < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Partielle Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Dirichlet Neumann: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:55 Di 24.11.2009
Autor: Denny22

Hallo an alle,

Seien [mm] $\Omega\subset\IR^n$ [/mm] offen und beschraenkt und [mm] $u:\Omega\rightarrow\IR$. [/mm]

Wir betrachten nun eine Dirichlet und eine Neumann 0-Randbedingung, d.h.
     (1): $u(x)=0$     [mm] $\forall\,x\in\partial\Omega$ [/mm]
     (2): [mm] $\frac{\partial u}{\partial n}(x)=0$ $\forall\,x\in\partial\Omega$ [/mm]
Frage: Gilt [mm] (1)$\Rightarrow$(2), (2)$\Rightarrow$(1), [/mm] beides oder gar nichts?

Ich waere sehr dankbar, wenn mir jemand darauf eine Antwort geben koennte.

Gruss

        
Bezug
Dirichlet Neumann: Antwort
Status: (Antwort) fertig Status 
Datum: 16:26 Di 24.11.2009
Autor: Merle23

Hi,

mache dir das doch selbst klar an einem ganz einfachen Beispiel wie [mm]\Omega = (0,1) \subset \IR[/mm].

LG, Alex

Bezug
                
Bezug
Dirichlet Neumann: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:22 Di 24.11.2009
Autor: Denny22


> Hi,
>  
> mache dir das doch selbst klar an einem ganz einfachen
> Beispiel wie [mm]\Omega = (0,1) \subset \IR[/mm].
>  
> LG, Alex

Okay, dann versuche ich das einmal.

Sei [mm] $\Omega=[0,2\pi]$ [/mm] und [mm] $f(x)=\sin(x)$. [/mm] Dann gilt [mm] $\sin(x)=0$ [/mm] für jedes [mm] $x\in\partial\Omega=\{0,2\pi\}$. [/mm] Aber [mm] $\frac{\partial f}{\partial n}(x)=\cos(x)\neq [/mm] 0$ für jedes [mm] $x\in\partial\Omega=\{0,2\pi\}$. [/mm] Damit folgt aus Dirichlet 0-RB i.A. keine Neumann 0-RB (RB=Randbedingung).

Für die andere Richtung fällt mir kein Gegenbeispiel ein. Könnte mir da jemand weiterhelfen?

Danke und Gruß






Bezug
                        
Bezug
Dirichlet Neumann: Antwort
Status: (Antwort) fertig Status 
Datum: 21:24 Di 24.11.2009
Autor: Merle23

Nimm eine konstante Abbildung. LG, Alex.

Bezug
                                
Bezug
Dirichlet Neumann: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:57 Di 24.11.2009
Autor: Denny22

Ja genau, aber eine konstante Abbildung ungleich 0.

Danke

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Partielle Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]