matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenMaßtheorieDirac-Maß
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Maßtheorie" - Dirac-Maß
Dirac-Maß < Maßtheorie < Maß/Integrat-Theorie < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Maßtheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Dirac-Maß: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:26 Mo 26.10.2009
Autor: kevin-m.

Aufgabe
[mm] \delta_s [/mm] bezeichne das Dirac-Maß an einer Stelle $s [mm] \in [/mm] S$ für den Ring [mm] $\mathfrak{B}\subset \mathfrak{P}(S)$. [/mm] Zeigen Sie, dass [mm] $\sum_{k\in \mathbb N} a_k \delta_{s_k}$ [/mm] ein additives Maß auf [mm] \mathfrak{B} [/mm] ist, wenn [mm] $a_k [/mm] >0$ mit $k [mm] \in \mathbb [/mm] N$ und [mm] $s_k \in [/mm] S$ gilt. Des Weiteren ist für [mm] $S=\mathbb [/mm] R$ der Wert von [mm] $\sum_{k \in \mathbb N}\frac{1}{2^k} \delta_{\frac{1}{k}}((0,1))$ [/mm] zu bestimmen.

Hallo,

zur ersten Teilaufgabe:
[mm] $\sum_{k\in \mathbb N} a_k \delta_{s_k}=a_1 \cdot \delta_{s_1} [/mm] + [mm] a_2 \cdot \delta_{s_2} [/mm] + [mm] a_3\cdot \delta_{s_3}+...$ [/mm] soll ein additives Maß sein. Ich muss also laut Def. folgendes zeigen:

[mm] $\mu: \mathfrak{B}\to \mathbb [/mm] R$ ist additives Maß, falls gilt:
[mm] $E_1, E_2 \in \mathfrak{B} \text{ und } E_1 \cap E_2=\emptyset \Rightarrow \mu(E_1 \cup E_2)=\mu(E_1)+\mu(E_2)$. [/mm]

Nun hätte ich mir gedacht, da die [mm] \delta_{s_k} [/mm] ohnehin schon Maße sind (das darf ich voraussetzen), gilt für alle Indizes [mm] $s_k \in [/mm] S$:
$A, B [mm] \in \mathfrak{B} \text{ und } [/mm] A [mm] \cap B=\emptyset \Rightarrow \delta_{s_k}(A \cup B)=\delta_{s_k}(A)+\delta_{s_k}(B)$, [/mm] also auch:
$$
[mm] a_i \cdot \left ( \delta_{s_i}(A \cup B) \right )=a_i \cdot \left ( \delta_{s_i}(A)+\delta_{s_i}(B) \right [/mm] ) = [mm] a_i \cdot \delta_{s_i}(A)+a_i \cdot \delta_{s_i}(B) [/mm]
$$

Ich bin mir aber nicht sicher, ob damit die Aussage schon bewiesen ist.

Und zur zweiten Teilaufgabe habe ich mir überlegt:

Nur für $k=1$ ist [mm] $\delta_{1/k}=\delta_1 [/mm] (0,1)=0$. Für alle anderen [mm] $k\in \mathbb [/mm] N$ gilt [mm] $\delta_{1/k}=1$. [/mm] Also reicht es, die Summe
[mm] $\sum_{k=2}^{\infty}\frac{1}{2^k}$ [/mm]
zu betrachten.


[mm] $\sum_{k=2}^{\infty}\frac{1}{2^k}=\sum_{k=2}^{\infty}\left ( \frac{1}{2} \right )^k=\frac{1}{1-\frac{1}{2}}-1-\frac{1}{2}=\frac{1}{2}$ [/mm]

Nach der geometrischen Summenformel wäre somit der Wert [mm] \frac{1}{2}. [/mm] Ist das so in Ordnung?

Viele Grüße
Kevin

        
Bezug
Dirac-Maß: Antwort
Status: (Antwort) fertig Status 
Datum: 09:08 Mi 28.10.2009
Autor: felixf

Hallo Kevin!

> [mm]\delta_s[/mm] bezeichne das Dirac-Maß an einer Stelle [mm]s \in S[/mm]
> für den Ring [mm]\mathfrak{B}\subset \mathfrak{P}(S)[/mm]. Zeigen
> Sie, dass [mm]\sum_{k\in \mathbb N} a_k \delta_{s_k}[/mm] ein
> additives Maß auf [mm]\mathfrak{B}[/mm] ist, wenn [mm]a_k >0[/mm] mit [mm]k \in \mathbb N[/mm]
> und [mm]s_k \in S[/mm] gilt. Des Weiteren ist für [mm]S=\mathbb R[/mm] der
> Wert von [mm]\sum_{k \in \mathbb N}\frac{1}{2^k} \delta_{\frac{1}{k}}((0,1))[/mm]
> zu bestimmen.
>  Hallo,
>  
> zur ersten Teilaufgabe:
>  [mm]\sum_{k\in \mathbb N} a_k \delta_{s_k}=a_1 \cdot \delta_{s_1} + a_2 \cdot \delta_{s_2} + a_3\cdot \delta_{s_3}+...[/mm]
> soll ein additives Maß sein. Ich muss also laut Def.
> folgendes zeigen:
>  
> [mm]\mu: \mathfrak{B}\to \mathbb R[/mm] ist additives Maß, falls
> gilt:
>  [mm]E_1, E_2 \in \mathfrak{B} \text{ und } E_1 \cap E_2=\emptyset \Rightarrow \mu(E_1 \cup E_2)=\mu(E_1)+\mu(E_2)[/mm].

[ok]

> Nun hätte ich mir gedacht, da die [mm]\delta_{s_k}[/mm] ohnehin
> schon Maße sind (das darf ich voraussetzen),

Und selbst wenn nicht: das kannst du sehr einfach zeigen ;-)

> gilt für
> alle Indizes [mm]s_k \in S[/mm]:
>  [mm]A, B \in \mathfrak{B} \text{ und } A \cap B=\emptyset \Rightarrow \delta_{s_k}(A \cup B)=\delta_{s_k}(A)+\delta_{s_k}(B)[/mm],
> also auch:
> [mm][/mm]
>  [mm]a_i \cdot \left ( \delta_{s_i}(A \cup B) \right )=a_i \cdot \left ( \delta_{s_i}(A)+\delta_{s_i}(B) \right[/mm]
> ) = [mm]a_i \cdot \delta_{s_i}(A)+a_i \cdot \delta_{s_i}(B)[/mm]
> [mm][/mm]

... und damit das gleiche fuer die Summe.

> Ich bin mir aber nicht sicher, ob damit die Aussage schon
> bewiesen ist.

Doch, ist sie.

> Und zur zweiten Teilaufgabe habe ich mir überlegt:
>  
> Nur für [mm]k=1[/mm] ist [mm]\delta_{1/k}=\delta_1 (0,1)=0[/mm]. Für alle
> anderen [mm]k\in \mathbb N[/mm] gilt [mm]\delta_{1/k}=1[/mm]. Also reicht es,
> die Summe
>  [mm]\sum_{k=2}^{\infty}\frac{1}{2^k}[/mm]
>  zu betrachten.

Exakt.

> [mm]\sum_{k=2}^{\infty}\frac{1}{2^k}=\sum_{k=2}^{\infty}\left ( \frac{1}{2} \right )^k=\frac{1}{1-\frac{1}{2}}-1-\frac{1}{2}=\frac{1}{2}[/mm]
>  
> Nach der geometrischen Summenformel wäre somit der Wert
> [mm]\frac{1}{2}.[/mm] Ist das so in Ordnung?

[ok]

Die Aufgabe ist tatsaechlich ziemlich einfach... :)

LG Felix


Bezug
                
Bezug
Dirac-Maß: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:47 Mi 28.10.2009
Autor: kevin-m.

Hallo Felix,

danke für deine Antwort. :-)

Viele Grüße
- Kevin -

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Maßtheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]