Dipolmoment < Elektrik < Physik < Naturwiss. < Vorhilfe
|
Aufgabe | Ein punktförmiger Dipol mit dem Moment [mm] \vec{p} [/mm] befinde sich am Ort [mm] \vec{r}. [/mm] Im Ursprung sitzt eine Punktladung q, die ein elektrostatisches Potential [mm] \phi(\vec{r})=\frac{q}{4\pi\varepsilon_{0}}\frac{\exp(-\mu r)}{r} [/mm] erzeuge.
(i) Berechnen Sie das E-Feld dieser Ladung.
(ii) Die potentielle Energie [mm] V(\vec{r}), [/mm] die der Dipol in dem äusseren Feld [mm] \vec{E} [/mm] hat, ist durch [mm] V(\vec{r})=-\vec{p}\vec{E}(\vec{r}) [/mm] gegeben. Berechnen Sie daraus die Kraft, die die Punktladung auf den Dipol ausübt. |
Hallo,
also bei (i) habe ich einfach [mm] \vec{E}=-\nabla\phi [/mm] verwendet und komme dann auf [mm] \vec{E}(\vec{r})=\frac{q}{4\pi\varepsilon_{0}}\exp(\frac{\mu}{r}+\frac{1}{r^{2}})\vec{e}_{r}.
[/mm]
Bei (ii) bin ich mir etwas unschlüssig, wie ich vorgehen soll, konkret stört mich das [mm] \vec{p}. [/mm] Es ist doch [mm] \vec{F}=-\nabla [/mm] V.
Aber nun weiß ich ja nichts über [mm] \vec{p}, [/mm] kann also V schlecht ableiten. Normalerweise gilt [mm] \vec{p}=\int dV'\rho(r')\frac{1}{|\vec{r}'-\vec{r}|} [/mm] aber das kann ich ja hier irgendwie nicht anwenden oder? Da steht was vom Ort [mm] \vec{r} [/mm] des Dipols. Kommt man damit auf das Moment?
|
|
|
|
> > also bei (i) habe ich einfach [mm]\vec{E}=-\nabla\phi[/mm] verwendet
>
> > und komme dann auf
> >
> [mm]\vec{E}(\vec{r})=\frac{q}{4\pi\varepsilon_{0}}\exp(\frac{\mu}{r}+\frac{1}{r^{2}})\vec{e}_{r}.[/mm]
> Da bin ich zu lange aus der Übung. Wenn ich das
> nachrechnen soll, dann musst Du ein paar Zwischenschritte
> hinschreiben. Wie das [mm]\bruch{1}{r^2}[/mm] in die
> Exponentialfunktion kommt, sehe ich so nicht.
> >
> > Bei (ii) bin ich mir etwas unschlüssig, wie ich vorgehen
> > soll, konkret stört mich das [mm]\vec{p}.[/mm] Es ist doch
> > [mm]\vec{F}=-\nabla[/mm] V.
>
> >
> > Aber nun weiß ich ja nichts über [mm]\vec{p},[/mm] kann also V
> > schlecht ableiten.
> Schreib doch mal [mm]\vec{p},[/mm] als Produkt von Betrag und
> Einheitsvektor. Dann schreib V wie in der Anleitung hin.
> Das Skalarprodukt hat doch keinen r-Anteil mehr. Also
> steckt da nur ein Faktor, der von der Orientierung des
> Dipols zum Feld abhängt. Vom Rest kannst Du den Gradienten
> bilden.
Das mit dem exp war falsch. Das sollte nicht als Funktionsargument da stehn. Aber ist auch egal.
Was ist denn da der Einheitsvektor von [mm] \vec{p}? [/mm] Einfach [mm] \frac{\vec{r}}{r}? [/mm] Aber wieso?
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 18:37 Mi 16.02.2011 | Autor: | notinX |
Hi,
> Was ist denn da der Einheitsvektor von [mm]\vec{p}?[/mm] Einfach
> [mm]\frac{\vec{r}}{r}?[/mm] Aber wieso?
nein der Einheitsvektor von [mm] $\vec [/mm] p$ ist sicher nicht [mm] $\frac{\vec{r}}{r}$, [/mm] sondern: [mm] $\vec{e}_p=\frac{\vec{p}}{p}$ [/mm] Wieso? Weil ein Einheistvektor per Definition die Norm 1 hat und das erreicht man indem man durch die Norm teilt.
Gruß,
notinX
|
|
|
|
|
Ok. Dann sehe ich aber nicht wie mir das weiterhelfen soll.
Dann hat man [mm] V(\vec{r})=p\vec{e}_{p}\cdot\vec{e}_{r}\frac{q}{4\pi\varepsilon_{0}}\exp(-\mu r)(\frac{\mu}{r}+\frac{1}{r^{2}})). [/mm] Wie soll ich da denn jetzt den Gradienten drauf hauen können?
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 19:54 Mi 16.02.2011 | Autor: | rainerS |
Hallo!
> Ok. Dann sehe ich aber nicht wie mir das weiterhelfen
> soll.
>
> Dann hat man
> [mm]V(\vec{r})=p\vec{e}_{p}\cdot\vec{e}_{r}\frac{q}{4\pi\varepsilon_{0}}\exp(-\mu r)(\frac{\mu}{r}+\frac{1}{r^{2}})).[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)
> Wie soll ich da denn jetzt den Gradienten drauf hauen
> können?
Im Zweifelsfall in Koordinatendarstellung. Ich würde $\vec{p}$ stehenlassen und $\vec{e}_r = \bruch{\vec{r}}{r}}$ schreiben.
Es ist
[mm] \nabla(\vec{p} * \vec{r}) = \nabla(x*p_x + y*p_y +z*p_z) = \vec{p} [/mm] .
Viele Grüße
Rainer
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 19:56 Mi 16.02.2011 | Autor: | rainerS |
Hallo!
> Aber nun weiß ich ja nichts über [mm]\vec{p},[/mm]
Das ist ein konstanter Vektor, mehr brauchst du nicht zum Ableiten.
Viele Grüße
Rainer
|
|
|
|