matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare GleichungssystemeDimensionssatz bei Matrizen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Lineare Gleichungssysteme" - Dimensionssatz bei Matrizen
Dimensionssatz bei Matrizen < Gleichungssysteme < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Gleichungssysteme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Dimensionssatz bei Matrizen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:35 Mi 13.01.2010
Autor: SnafuBernd

Aufgabe
Sei A [mm] \in K^{m x n}, [/mm] dann gilt dim (Kern(A) = n - Rang(A)

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
Meine Frage ist: Gilt diese Formel auch bei quadratischen Matrizen nur wenn sie regulär sind?

        
Bezug
Dimensionssatz bei Matrizen: Antwort
Status: (Antwort) fertig Status 
Datum: 06:45 Do 14.01.2010
Autor: fred97


> Sei A [mm]\in K^{m x n},[/mm] dann gilt dim (Kern(A) = n - Rang(A)
>  Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
>  Meine Frage ist: Gilt diese Formel auch bei quadratischen
> Matrizen nur wenn sie regulär sind?  


Diese Formel gilt für jede Matrix

FRED

Bezug
                
Bezug
Dimensionssatz bei Matrizen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:22 Do 14.01.2010
Autor: SnafuBernd

Aber würde es dann bei eine regulären Matrix A [mm] \in K^{n x n} [/mm] nicht immer  bedeuten, dass
dim(Kern(A))= n- Rang(A) = 0 ist. Da der Rang einer regulären Matrix immer n ist. Das würde doch heißen dass es gar keine Lösung im homogenen System gibt, oder?

Bezug
                        
Bezug
Dimensionssatz bei Matrizen: Antwort
Status: (Antwort) fertig Status 
Datum: 12:25 Do 14.01.2010
Autor: fred97


> Aber würde es dann bei eine regulären Matrix A [mm]\in K^{n x n}[/mm]
> nicht immer  bedeuten, dass
> dim(Kern(A))= n- Rang(A) = 0 ist.

Wieso nicht ? Wenn A regulär ist, so ist Kern(A) = {0}


> Da der Rang einer
> regulären Matrix immer n ist. Das würde doch heißen dass
> es gar keine Lösung im homogenen System gibt, oder?


Die Lösungsmenge des homogenen Systems = {0}

FRED

Bezug
                                
Bezug
Dimensionssatz bei Matrizen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:30 Do 14.01.2010
Autor: SnafuBernd

JA aber die Gleichung gibt mir doch die Dimension des Kernes und nicht den Vektor bzw. das Element des Kernes. Wenn ein Vektorraum die Dimension 0 hat, hat er dann immer noch den Nullvektor als Element? Ich dachte eine V-Raum mit nur dem Nullvektor müsste immer noch die Dimension 1 haben?

Bezug
                                        
Bezug
Dimensionssatz bei Matrizen: Antwort
Status: (Antwort) fertig Status 
Datum: 12:37 Do 14.01.2010
Autor: fred97


> JA aber die Gleichung gibt mir doch die Dimension des
> Kernes und nicht den Vektor bzw. das Element des Kernes.
> Wenn ein Vektorraum die Dimension 0 hat, hat er dann immer
> noch den Nullvektor als Element? Ich dachte eine V-Raum mit
> nur dem Nullvektor müsste immer noch die Dimension 1
> haben?

Da irrst Du ! dim(V) = 0 [mm] \gdw [/mm] V = {0}

FRED

Bezug
                                                
Bezug
Dimensionssatz bei Matrizen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:51 Do 14.01.2010
Autor: SnafuBernd

Alles klar.Kapiert!Vielen Dank!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Gleichungssysteme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]