matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare AbbildungenDimensionsformel für lin. Abb.
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Lineare Abbildungen" - Dimensionsformel für lin. Abb.
Dimensionsformel für lin. Abb. < Abbildungen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Dimensionsformel für lin. Abb.: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:21 Mi 12.11.2008
Autor: Kocram

Aufgabe
Sei f: V-->W eine lineare Abbildung von Vektorräumen. Zeigen Sie:
a) Wenn [mm] v_{1},...,v_{r} \in [/mm] V linear abhängig sind, dann auch [mm] f(v_{1}),...,f(v_{r}) \in [/mm] W.
b) Für jeden Untervektorraum U [mm] \subset [/mm] V ist dim f(U) [mm] \le [/mm] dim U.
c) f ist injektiv genau dann, wenn jedes System linear unabhängiger [mm] v_{1},...,v_{r} \in [/mm] V auf linear unabhängige [mm] f(v_{1}),...,f(v_{r}) \in [/mm] W abgebildet wird.
d) f ist injektiv genau dann, wenn dim f(U) = dim U gilt für jeden Untervektorraum U von V.

Hi,

also a) habe ich bereits gelöst.

Bei der b) bin ich aber echt am verzweifeln. Ich weiß einfach nicht wie ich das angehen soll. Im Jänich ist zwar der Beweis drin, aber verstehen tu ich den auch nicht.

        
Bezug
Dimensionsformel für lin. Abb.: Antwort
Status: (Antwort) fertig Status 
Datum: 16:36 Mi 12.11.2008
Autor: leduart

Hallo
Was verstehst du denn nicht an dem beweis im Jänisch?
Warum stimmt die Umkehrung von a) nicht d.h. wenn v1.... [mm] v_n [/mm] linear unabh so auch f(v1)... f(vn) lin unabhaengig ist falsch.
Gruss leduart

Bezug
                
Bezug
Dimensionsformel für lin. Abb.: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:22 Mi 12.11.2008
Autor: Kocram


> Hallo
>  Was verstehst du denn nicht an dem beweis im Jänisch?

Also er setzt ja [mm] w_{i}=f(v_{k+1}) [/mm] für i=1,...,n-k.
Das heißt dann ja, dass [mm] w_{1}=...=w_{n-k}=f(v_{k+1}), [/mm] oder?

Und warum gilt:
[mm] f(\lambda_{1}v_{1}+...+\lambda_{n}v_{n})=\lambda_{k+1}w_{1}+...+\lambda_{n}w_{n-k}? [/mm]

>  Warum stimmt die Umkehrung von a) nicht d.h. wenn v1....
> [mm]v_n[/mm] linear unabh so auch f(v1)... f(vn) lin unabhaengig ist
> falsch.
>  Gruss leduart

Man kommt durch [mm] f(0*v_{1},...,0*v_{n})=0 [/mm] ja wieder auf f(0)=0 und damit wäre [mm] f(v_{1}),...,f(v_{n}) [/mm] wieder lin. abhängig.

Bezug
                        
Bezug
Dimensionsformel für lin. Abb.: Antwort
Status: (Antwort) fertig Status 
Datum: 21:58 Mi 12.11.2008
Autor: leduart

Hallo
1. was du mit dem Satz :
"Man kommt durch $ [mm] f(0\cdot{}v_{1},...,0\cdot{}v_{n})=0 [/mm] $ ja wieder auf f(0)=0 und damit wäre $ [mm] f(v_{1}),...,f(v_{n}) [/mm] $ wieder lin. abhängig."
sagen willst versteh ich nicht. Soll das ein Beweis fuer a) sein oder meine Frage beantworten? beides tut es nicht. aus f(0)=0 folgt nicht irgendwas. und ob die [mm] v_i [/mm] abhaengig oder nicht sind [mm] f(0*v1+..........+0*v_k)=0 [/mm] sagt uber Abh. oder nicht abh. nix aus.
Den jaenisch hab ich grad nicht da, deshalb fehlen mir ein paar vors. um was zu dem einzelnen satz zu sagen.
Tatsache ist. Wenn f V auf V abbildet ist der Rang gleich. deshalb nimm an dimW<dimV
jetzt nimm einen Unterraum U der Dimension k<n.
d.h. es gibt eine Basis auf U mit k lin unabh. Vektoren v1 bis [mm] v_k [/mm]
jeder weitere Vektor [mm] v_{k+1} [/mm] kann aus den anderen zusammengestzt werden. jetzt betrachte die Bilder von [mm] v_1 [/mm] bis [mm] v_{k+1} [/mm] nach a sind die wieder lin abh.
Kommst du damit zu Ende.
Gruss leduart

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]