matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGruppe, Ring, KörperDimension von Körpern
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Gruppe, Ring, Körper" - Dimension von Körpern
Dimension von Körpern < Gruppe, Ring, Körper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Dimension von Körpern: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 09:29 Mi 18.11.2009
Autor: matt101

Aufgabe
Seinen [mm] K_{1}\subseteq K_{2} \subseteq K_{3} [/mm] Körper.
Zeigen sie:
     [mm] dim_{K_{1}}(K_{3}) [/mm] = [mm] dim_{K_{2}}(K_{3}) dim_{K_{1}}(K_{2}) [/mm]

wobei [mm] dim_{K}(V) [/mm] bedeutet die Dimension von V über dem Körper K.

Ich weiß dass ein Körper einen Vektorraum über sich selbst ist, aber irgendwie komme ich mit diesen Dimensionen über unterschiedliche Körpern nicht klar.

Kann mir das jemand vielleicht veranschaulichen oder einen Tipp geben?


Danke!

        
Bezug
Dimension von Körpern: Antwort
Status: (Antwort) fertig Status 
Datum: 11:43 Mi 18.11.2009
Autor: felixf

Hallo!

> Seinen [mm]K_{1}\subseteq K_{2} \subseteq K_{3}[/mm] Körper.
> Zeigen sie:
> [mm]dim_{K_{1}}(K_{3})[/mm] = [mm]dim_{K_{2}}(K_{3}) dim_{K_{1}}(K_{2})[/mm]
>  
> wobei [mm]dim_{K}(V)[/mm] bedeutet die Dimension von V über dem
> Körper K.

Zeige zuerst: ist eine der Dimensionen auf der rechten Seite unendlich, so ist auch die auf der linken Seite unendlich.

Dann nimm an, die beiden auf der rechten Seite sind endlich. Waehle eine Basis [mm] $v_1, \dots, v_n$ [/mm] von [mm] $K_2$ [/mm] ueber [mm] $K_1$ [/mm] und eine Basis [mm] $w_1, \dots, w_m$ [/mm] von [mm] $K_3$ [/mm] ueber [mm] $K_2$. [/mm]

Zeige dann, dass [mm] $v_1 w_1, \dots, v_1 w_m, v_2 w_1, \dots, v_2 w_m, \dots, v_n w_m$ [/mm] eine Basis von [mm] $K_3$ [/mm] ueber [mm] $K_1$ [/mm] ist: zeige erst, dass es ein Erzeugendensystem ist, dann, dass es linear unabhaengig ist.

>  Ich weiß dass ein Körper einen Vektorraum über sich
> selbst ist, aber irgendwie komme ich mit diesen Dimensionen
> über unterschiedliche Körpern nicht klar.
>
> Kann mir das jemand vielleicht veranschaulichen oder einen
> Tipp geben?

Schau dir mal den Koerperturm [mm] $K_3 [/mm] = [mm] \IQ(\sqrt[4]{2})$, $K_2 [/mm] = [mm] \IQ(\sqrt{2})$, $K_1 [/mm] = [mm] \IQ$ [/mm] an. Dann ist [mm] $K_2 [/mm] = [mm] K_1 \oplus K_1 \sqrt{2}$, [/mm] hat also Dimension 2 ueber [mm] $K_1$. [/mm] Weiterhin ist [mm] $K_3 [/mm] = [mm] K_1 \oplus \sqrt[4]{2} K_1 \oplus \sqrt{2} K_1 \oplus \sqrt[4]{2}^3 K_1$, [/mm] hat also Dimension 4 ueber [mm] $K_1$. [/mm] Schliesslich ist [mm] $K_3 [/mm] = [mm] K_2 \oplus \sqrt[4]{2} K_2$, [/mm] hat also Dimension 2 ueber [mm] $K_2$. [/mm]

Schreib dir mal auf, wie die Koerper genau aussehen, und warum diese Gleichheiten stimmen.

LG Felix


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]