matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Lineare AlgebraDimension vom Durchschnitt
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Uni-Lineare Algebra" - Dimension vom Durchschnitt
Dimension vom Durchschnitt < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Dimension vom Durchschnitt: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 10:05 Mi 21.11.2007
Autor: SinusKosinus

Aufgabe 1
Sei V n-dimensional und seien [mm] U_1, U_2 [/mm] zwei verschiedene (n-1) dimensionale Teilräume von V. Zeige , dim [mm] (U_1\cap U_2)=n-2 [/mm]  

Aufgabe 2
Hallo! Sitze schon seit gestern mit dieser Aufgabe... Weiß nicht wie ich das zeigen soll:
Sei V n-dimensional und seien [mm] U_1, U_2 [/mm] zwei verschiedene (n-1) dimensionale Teilräume von V. Zeige , dim [mm] (U_1\cap U_2)=n-2 [/mm]
Kann mir jemand bitte ganz kleinen Tipp geben?
Ich weiß, dass ich die Formel benutzen muss... Doch dafür muss ich erst mal [mm] dim(U_1+U_2) [/mm] finden... Da komme ich nicht weiter...
Grüß, SinusKosinus
PS.: Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.



        
Bezug
Dimension vom Durchschnitt: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:25 Mi 21.11.2007
Autor: SinusKosinus

Ist die frage so dumm, dass keiner mir helfen will?...

Bezug
                
Bezug
Dimension vom Durchschnitt: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:32 Mi 21.11.2007
Autor: Tyskie84

Ist [mm] dim(U_{1}+U_{2}) [/mm] nicht n-4???

Gruß

Bezug
        
Bezug
Dimension vom Durchschnitt: Antwort
Status: (Antwort) fertig Status 
Datum: 11:39 Mi 21.11.2007
Autor: GorkyPark

Hallo SinCos,

willkommen hier im Matheraum. Versuche nächstes Mal nur die Aufgabenstellung in den Aufgabentext einzugeben. Deine Lösungsversuche, Ideen und Kommentare dann im Textfeld eingeben. So bleibt alles übersichtlich :D.

Du hast sicherlich schon etwas von der Dimensionsformel gehört:

[mm] dim(V)=dim(U_{1})+dim(U_{2})-dim(U_{1}\cap U_{2}) [/mm]

Diese kannst du hier ohne Gefahr anwenden, da [mm] U_{1} [/mm] und [mm] U_{2} [/mm] von einander verschieden sind.

Setze für dim(V)=n und [mm] dim(U_{1})=dim(U_{2})=n-1 [/mm] und forme dann um.

Ciao

GorkyPark

Bezug
        
Bezug
Dimension vom Durchschnitt: Antwort
Status: (Antwort) fertig Status 
Datum: 11:47 Mi 21.11.2007
Autor: angela.h.b.


> Sei V n-dimensional und seien [mm]U_1, U_2[/mm] zwei verschiedene
> (n-1) dimensionale Teilräume von V. Zeige , dim [mm](U_1\cap U_2)=n-2[/mm]



>  Ich weiß, dass ich die Formel benutzen muss... Doch dafür
> muss ich erst mal [mm]dim(U_1+U_2)[/mm] finden... Da komme ich nicht
> weiter...

Hallo,

[willkommenmr].

Überlege Dir, daß für die Dimension v. [mm] U_1+U_2 [/mm]  überhaupt nur n-1 oder n infrage kommt.

Als nächstes zeige, daß die Dimension aufgrund der Voraussetzung nicht n-1 sein kann.

Dann wende den Dimensionssatz an.

Gruß v. Angela

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]