matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra - Moduln und VektorräumeDimension eines Abbildungsraum
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Lineare Algebra - Moduln und Vektorräume" - Dimension eines Abbildungsraum
Dimension eines Abbildungsraum < Moduln/Vektorraum < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Moduln und Vektorräume"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Dimension eines Abbildungsraum: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:20 So 20.01.2013
Autor: JoeSunnex

Aufgabe
A3.) Betrachte den [mm] $\IR$-Vektorraum $\IR^{\IR}$ [/mm] aller Abbildungen von [mm] $\IR \rightarrow \IR$. [/mm] Seien
[mm] $f_1: \IR \rightarrow \IR [/mm] : x [mm] \mapsto \cos(x)\\ [/mm]
[mm] f_2: \IR \rightarrow \IR [/mm] : x [mm] \mapsto \sin(x)\\ [/mm]
[mm] f_3: \IR \rightarrow \IR [/mm] : x [mm] \mapsto 0\\ [/mm]
[mm] f_4: \IR \rightarrow \IR [/mm] : x [mm] \mapsto 1\\ [/mm]
[mm] f_5: \IR \rightarrow \IR [/mm] : x [mm] \mapsto x\\ [/mm]
[mm] f_6: \IR \rightarrow \IR [/mm] : x [mm] \mapsto [/mm] 1+x.

Sei $V = [mm] \left$ [/mm] der von den Vektoren [mm] $f_1,\dots,f_6$ [/mm] aufgespannte Teilraum von [mm] $\IR^{\IR}$. [/mm]

a.) Bestimmen Sie die Dimension von $V$.

Hallo zusammen,

habe ein Problem beim Bestimmen der Dimension vom Teilraum $V$ und zwar weiß, ich, dass ich herausfinden muss welche Vektoren bzw. Abbildungen im Aufspann linear unabhängig sind, um mir so die Basis zu konstuieren, deren Kardinalität ja die Dimension des VR ist.

Also wäre der Ansatz mit $a,b,c,d,e,f [mm] \in \IR$: [/mm]
[mm] $a\cos(x)+b\sin(x)+c\cdot 0+d\cdot [/mm] 1+ [mm] e\cdot [/mm] x + f [mm] \cdot [/mm] (1+x) = 0$.

Wie muss ich jetzt weiter verfahren?

Grüße
Joe

Hieraus folgt aus trivialen Gründen, dass $c [mm] \in \IR$ [/mm] beliebig ist und, dass [mm] $d\cdot [/mm] 1+ [mm] e\cdot [/mm] x = f [mm] \cdot [/mm] (1+x)$ eine Linearkombination (wenn $d=e$) an sich ist.


        
Bezug
Dimension eines Abbildungsraum: Antwort
Status: (Antwort) fertig Status 
Datum: 15:27 So 20.01.2013
Autor: fred97


> A3.) Betrachte den [mm]\IR[/mm]-Vektorraum [mm]\IR^{\IR}[/mm] aller
> Abbildungen von [mm]\IR \rightarrow \IR[/mm]. Seien
>  [mm]$f_1: \IR \rightarrow \IR[/mm] : x [mm]\mapsto \cos(x)\\[/mm]
>  [mm]f_2: \IR \rightarrow \IR[/mm]
> : x [mm]\mapsto \sin(x)\\[/mm]
>  [mm]f_3: \IR \rightarrow \IR[/mm] : x [mm]\mapsto 0\\[/mm]
>  
> [mm]f_4: \IR \rightarrow \IR[/mm] : x [mm]\mapsto 1\\[/mm]
>  [mm]f_5: \IR \rightarrow \IR[/mm]
> : x [mm]\mapsto x\\[/mm]
>  [mm]f_6: \IR \rightarrow \IR[/mm] : x [mm]\mapsto[/mm] 1+x.
>  
> Sei [mm]V = \left[/mm] der von den
> Vektoren [mm]f_1,\dots,f_6[/mm] aufgespannte Teilraum von
> [mm]\IR^{\IR}[/mm].
>  
> a.) Bestimmen Sie die Dimension von [mm]V[/mm].
>  Hallo zusammen,
>  
> habe ein Problem beim Bestimmen der Dimension vom Teilraum
> [mm]V[/mm] und zwar weiß, ich, dass ich herausfinden muss welche
> Vektoren bzw. Abbildungen im Aufspann linear unabhängig
> sind, um mir so die Basis zu konstuieren, deren
> Kardinalität ja die Dimension des VR ist.
>  
> Also wäre der Ansatz mit [mm]a,b,c,d,e,f \in \IR[/mm]:
>  
> [mm]a\cos(x)+b\sin(x)+c\cdot 0+d\cdot 1+ e\cdot x + f \cdot (1+x) = 0[/mm].
>
> Wie muss ich jetzt weiter verfahren?
>  
> Grüße
>  Joe
>  
> Hieraus folgt aus trivialen Gründen, dass [mm]c \in \IR[/mm]
> beliebig ist und, dass [mm]d\cdot 1+ e\cdot x = f \cdot (1+x)[/mm]
> eine Linearkombination (wenn [mm]d=e[/mm]) an sich ist.
>  


Da [mm] f_3=0 [/mm] und [mm] f_6=f_4+f_5 [/mm] ist, haben wir

[mm] V= [/mm]

Zeige nun, dass [mm] f_1,f_2,f_4,f_5 [/mm] linear unabhängig sind.

FRED

Bezug
                
Bezug
Dimension eines Abbildungsraum: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:14 So 20.01.2013
Autor: JoeSunnex

Ich danke dir für deine Antwort Fred.

Also wäre jetzt der Ansatz:
[mm] $a\cos(x)+b\sin(x)+d\cdot [/mm] 1+ [mm] e\cdot [/mm] x = 0 $.

Im Grunde sehe ich, dass cos und sin lin. unabhängig sind, da dies bereits in einer vorherigen Übung gezeigt wurde, desweiteren muss d=0 und e=0 sein, da ansonsten 0 nicht erreicht werden kann, daher folgt, die triviale Linearkombination und so die lineare Unabhängigkeit.

Andernfalls müsste ich doch die einzelnen Nullstellen ausprobieren oder? Also z.B. für $x= 0$ ist $a+d = 0$...

Grüße
Joe

Bezug
                        
Bezug
Dimension eines Abbildungsraum: Antwort
Status: (Antwort) fertig Status 
Datum: 18:08 So 20.01.2013
Autor: angela.h.b.

Hallo,

> Also wäre jetzt der Ansatz:

wir machen es ganz genau, okay?

Der Ansatz wäre [mm] af_1+bf_2+df_4+ef_5=Nullfunktion. [/mm]

Wir haben es hier mit einer Gleichheit von Funktionen zu tun,
Funktion rechts=Funktion links.
Was bedeutet das?

Dies:
für alle [mm] x\in\IR [/mm] gilt
[mm] (af_1+bf_2+df_4+ef_5)(x)=Nullfunktion(x) [/mm]
<==>
[mm] af_1(x)+bf_2(x)+df_4(x)+ef_5(x)=0 [/mm]
<==>

>  [mm]a\cos(x)+b\sin(x)+d\cdot 1+ e\cdot x = 0 [/mm].

Da dies für alle x gilt, gilt es für alle x-Werte, die ich mir ausdenke. Also gilt es auch für
für x=0, [mm] x=\pi/2, x=\pi [/mm] und [mm] x=-\pi/2. [/mm]

==>  ein LGS mit den Variablen a,b,d,e.

LG Angela




Bezug
                                
Bezug
Dimension eines Abbildungsraum: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:52 So 20.01.2013
Autor: JoeSunnex

Hallo angela, danke dir für deine Antwort.

>  
> wir machen es ganz genau, okay?
>  

Ja natürlich ist es ganz genau besser als schnell, bloß da ich gerade inmitten der Klausurvorbereitung stecke, versuche ich so wenig Aufwand wie möglich zu erzeugen :)

> Der Ansatz wäre [mm]af_1+bf_2+df_4+ef_5=Nullfunktion.[/mm]
>  
> Wir haben es hier mit einer Gleichheit von Funktionen zu
> tun,
>  Funktion rechts=Funktion links.
>  Was bedeutet das?
>  
> Dies:
>  für alle [mm]x\in\IR[/mm] gilt
>  [mm](af_1+bf_2+df_4+ef_5)(x)=Nullfunktion(x)[/mm]
>  <==>
>  [mm]af_1(x)+bf_2(x)+df_4(x)+ef_5(x)=0[/mm]
>  <==>
>  >  [mm]a\cos(x)+b\sin(x)+d\cdot 1+ e\cdot x = 0 [/mm].
>  
> Da dies für alle x gilt, gilt es für alle x-Werte, die
> ich mir ausdenke. Also gilt es auch für
>  für x=0, [mm]x=\pi/2, x=\pi[/mm] und [mm]x=-\pi/2.[/mm]
>  
> ==>  ein LGS mit den Variablen a,b,d,e.

>  

OK alles klar, also gilt:
Für $x = 0 [mm] \Rightarrow [/mm] a+d=0$
Für $x = [mm] \pi/2 \Rightarrow b+d+\frac{e\pi}{2} [/mm] = 0$
Für $x = [mm] \pi \Rightarrow -a+d+\pi [/mm] e = 0$
Für $x = [mm] -\frac{\pi}{2} \Rightarrow -b+d-\frac{e\pi}{2} [/mm] = 0$

Gleichungen seien römisch nummeriert und so gilt:
$II + IV: 2d = 0 [mm] \Rightarrow [/mm] d = 0$
$I: a = 0$
$III: e = 0$
$IV: b = 0$

Also sind [mm] $f_1,f_2,f_4,f_5$ [/mm] linear unabhängig und daher ist die Dimension von V 4.

Ist diese Rechnung korrekt?

Grüße
Joe


Bezug
                                        
Bezug
Dimension eines Abbildungsraum: Antwort
Status: (Antwort) fertig Status 
Datum: 19:28 So 20.01.2013
Autor: angela.h.b.

Hallo,

ja, richtig.

LG Angela


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Moduln und Vektorräume"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]