matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra - MatrizenDimension des Kerns
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Lineare Algebra - Matrizen" - Dimension des Kerns
Dimension des Kerns < Matrizen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Dimension des Kerns: Frage (reagiert)
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 21:58 Di 06.12.2011
Autor: Seb12

Aufgabe
A [mm] \pmat{ 0 & 1 & 2 &1 &0 \\ 1 & 1&1 &2 & 1 \\ 1 & 1 &1 & 1 & 1 } [/mm]
Bestimme die Dimension des Kerns von A

Hi,
habe jetzt mit Gauss versucht so weit zu kommen wies nur geht.
Komme auf
[mm] \pmat{ 1 & 1 & 1 &2 &1 \\ -1 & 0&1 &-1 & -1 \\ 1 & 0 &-1 & 0 & 1 } [/mm]

Wie drücke ich nun den Kern aus ? Habe ich ne Nullzeile kann ich ja wenigstens einen Freiheitsgrad. Was mache ich nun ? Oder kann ich hier schon sagen das die Dimension = 3 ist  ?

lg
Seb


Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt

        
Bezug
Dimension des Kerns: Antwort
Status: (Antwort) fertig Status 
Datum: 23:18 Di 06.12.2011
Autor: barsch

Hallo,


> A [mm]\pmat{ 0 & 1 & 2 &1 &0 \\ 1 & 1&1 &2 & 1 \\ 1 & 1 &1 & 1 & 1 }[/mm]
>  
> Bestimme die Dimension des Kerns von A
>  Hi,
>  habe jetzt mit Gauss versucht so weit zu kommen wies nur
> geht.
>  Komme auf
>  [mm]\pmat{ 1 & 1 & 1 &2 &1 \\ -1 & 0&1 &-1 & -1 \\ 1 & 0 &-1 & 0 & 1 }[/mm]

es geht noch weiter. Du möchtest die Matrix ja auf Zeilen-Stufen-Form (ZSF) bringen, um leichter eine Aussage über den Kern treffen zu können. Und diese Matrix hilft dir noch nicht wirklich weiter. []Hier kannst du die Matrix zum Beispiel einmal eingeben und zeigen lassen, wie man auf die ZSF
kommt. Das hilft dir vielleicht nachzuvollziehen, wie vorzugehen ist.

> Wie drücke ich nun den Kern aus ? Habe ich ne Nullzeile
> kann ich ja wenigstens einen Freiheitsgrad. Was mache ich
> nun ? Oder kann ich hier schon sagen das die Dimension = 3
> ist  ?

Der Kern von A ist die folgende Menge: [mm]Kern(A)=\left \{ x\in\IR^5|Ax=0 \right \}[/mm]. Und die [mm]x\in\text{Kern(A)}[/mm] musst du ermitteln.

> lg
>  Seb
>  
>
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt

Gruß
barsch


Bezug
                
Bezug
Dimension des Kerns: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:13 Mi 07.12.2011
Autor: Seb12

Danke für die Antwort !
Stimmt, ich habe bei meiner Rechnung einige Schritte vergessen.
[mm] \pmat{ 1 & 0&-1&0&1 \\ 0 & 1 & 2 & 0 &0 \\ 0 & 0 &0 &1 &0 } [/mm]

nun kann ich an Zeile 3 gut erkennen das x4=0 ist, durch die zweite Zeile bekomme ich x3=-1/2 , x2=-2

bleibt meine Zeile 1, x1 +1/2 +x5 =0
Ist also x1=x5 = -1/2 ?


lg
Seb


Bezug
                        
Bezug
Dimension des Kerns: Antwort
Status: (Antwort) fertig Status 
Datum: 22:24 Mi 07.12.2011
Autor: MathePower

Hallo Seb12,

> Danke für die Antwort !
>  Stimmt, ich habe bei meiner Rechnung einige Schritte
> vergessen.
>  [mm]\pmat{ 1 & 0&-1&0&1 \\ 0 & 1 & 2 & 0 &0 \\ 0 & 0 &0 &1 &0 }[/mm]
>  
> nun kann ich an Zeile 3 gut erkennen das x4=0 ist, durch
> die zweite Zeile bekomme ich x3=-1/2 , x2=-2
>  


Die Lösung [mm]x_{2}[/mm] ist von [mm]x_{3}[/mm] abhängig.


> bleibt meine Zeile 1, x1 +1/2 +x5 =0
>  Ist also x1=x5 = -1/2 ?
>  


Hier ebenfalls:

Die Lösung [mm]x_{1}[/mm] ist von [mm]x_{3}, \ x_{5}[/mm] abhängig.


>
> lg
>  Seb
>  


Gruss
MathePower

Bezug
                                
Bezug
Dimension des Kerns: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:40 Mi 07.12.2011
Autor: Seb12

Okay das ergibt Sinn. Nur wie drücke ich dies explizit als Kern aus ?
wenn x1 = x3 =x5 , x2=x3 , x4 = 1


Bezug
                                        
Bezug
Dimension des Kerns: Antwort
Status: (Antwort) fertig Status 
Datum: 22:49 Mi 07.12.2011
Autor: MathePower

Hallo Seb12,

> Okay das ergibt Sinn. Nur wie drücke ich dies explizit als
> Kern aus ?
>  wenn x1 = x3 =x5 , x2=x3 , x4 = 1
>  

Wird für [mm]x_{3}=s, \ x_{5}=t[/mm] gewählt., dann ist

Nun, [mm]x_{1}=\alpha*s+\beta*t, \ x_{2}=\gamma*s, \ x_{3}=s, \ x_{4}=0, \ x_{5}=t[/mm]

Oder in etwas kompakterer Form:

[mm]\pmat{x_{1} \\ x_{2} \\ x_{3} \\ x_{4} \\ x_{5}}=s*\pmat{\alpha \\ \gamma \\ 1 \\ 0 \\ 0}+t*\pmat{\beta \\ 0 \\ 0 \\ 0 \\ 1}[/mm]

Damit ist die Dimension des Kerns ... .


Gruss
MathePower



Bezug
                                                
Bezug
Dimension des Kerns: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:52 Mi 07.12.2011
Autor: Seb12

=2  aufgrund der 2 unabhängigen

Bezug
                                                        
Bezug
Dimension des Kerns: Antwort
Status: (Antwort) fertig Status 
Datum: 06:48 Do 08.12.2011
Autor: angela.h.b.


> =2  aufgrund der 2 unabhängigen

Hallo,

unabhängigen was? Katzen, Mäuse, Nikoläuse?

Man sieht, daß der Kern erzeugt wird von 2 linear unabhängigen Vektoren, also ist dimKernA=2.

Gruß v. Angela


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]