matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra SonstigesDimension Untervektorraum
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Lineare Algebra Sonstiges" - Dimension Untervektorraum
Dimension Untervektorraum < Sonstiges < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Dimension Untervektorraum: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:16 Fr 06.06.2008
Autor: ereger

Aufgabe
Im [mm] \IR-Vektorraum \IR^{4} [/mm] seien folgende Untervektorräume V und W gegeben:
                  [mm] V:=\alpha( [/mm] { (1,-2,3,4),(3,4,-1,-2),(2,-1,1,-3) } )
                 [mm] W:=\alpha( [/mm] { (6,1,3,-1),(4,5,-3,-9),(2,3,1,5) } )
Man bestimme dimV, dimW, dim(V [mm] \cap [/mm] W) und dim(V+W).

Hallo!

Könnt ihr mir sagen, ob meine Überlegungen zur Aufgabe richtig sind:

Dim eines vektorraumes ist gleich Anzahl der unabhängigen Vektoren in diesem VR?ALso im V wäre dann alle drei vektoren der linearen Hülle.
dimV=3.
Genauso im UVR W, dimW=3.
Die dim(V [mm] \cap [/mm] W) sollte eigentlich 0 sein da diese Untervektorräume keine Durchschnittmenge bilden?
Und dim(V+W) stelle ich mir so vor dass ich alle 6 vektoren auf Unabhängigkeit prüfen soll?
Für jeden Tip würde ich euch dankbar!

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.


        
Bezug
Dimension Untervektorraum: Antwort
Status: (Antwort) fertig Status 
Datum: 20:14 Fr 06.06.2008
Autor: MathePower

Hallo ereger,

[willkommenmr]

> Im [mm]\IR-Vektorraum \IR^{4}[/mm] seien folgende Untervektorräume V
> und W gegeben:
>                    [mm]V:=\alpha([/mm] {
> (1,-2,3,4),(3,4,-1,-2),(2,-1,1,-3) } )
>                   [mm]W:=\alpha([/mm] {
> (6,1,3,-1),(4,5,-3,-9),(2,3,1,5) } )
>  Man bestimme dimV, dimW, dim(V [mm]\cap[/mm] W) und dim(V+W).
>  Hallo!
>  
> Könnt ihr mir sagen, ob meine Überlegungen zur Aufgabe
> richtig sind:
>  
> Dim eines vektorraumes ist gleich Anzahl der unabhängigen
> Vektoren in diesem VR?ALso im V wäre dann alle drei
> vektoren der linearen Hülle.
>  dimV=3.
>  Genauso im UVR W, dimW=3.


Das muß Du noch nachweisen, aber es stimmt. [ok]


>  Die dim(V [mm]\cap[/mm] W) sollte eigentlich 0 sein da diese
> Untervektorräume keine Durchschnittmenge bilden?


Hier ist der Durchschnitt nicht leer.


>  Und dim(V+W) stelle ich mir so vor dass ich alle 6
> vektoren auf Unabhängigkeit prüfen soll?


Ja, in der Regel macht man das so.

Hilfreich ist auch diese []Dimensionsformel.


>  Für jeden Tip würde ich euch dankbar!
>  
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
>  

Gruß
MathePower

Bezug
                
Bezug
Dimension Untervektorraum: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:51 Sa 07.06.2008
Autor: ereger

Danke für den Tip!
Mit dimensionsformel kann ich dim(V+W) ausrechnen, wenn ich schon dim(V [mm] \cap [/mm] W) habe.
Nun weiß ich nicht so genau wie man das ausrechnet.Muss man alle 6 Vektoren zwei UVR auf Unabhängigkeit untersuchen?

Bezug
                        
Bezug
Dimension Untervektorraum: Antwort
Status: (Antwort) fertig Status 
Datum: 13:01 Sa 07.06.2008
Autor: MathePower

Hallo ereger,

> Danke für den Tip!
>  Mit dimensionsformel kann ich dim(V+W) ausrechnen, wenn
> ich schon dim(V [mm]\cap[/mm] W) habe.
>  Nun weiß ich nicht so genau wie man das ausrechnet.Muss
> man alle 6 Vektoren zwei UVR auf Unabhängigkeit
> untersuchen?

Ja, so isses.

Gruß
MathePower

Bezug
                                
Bezug
Dimension Untervektorraum: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:46 Sa 07.06.2008
Autor: ereger

Vielen Dank!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]