matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare AbbildungenDimension Teilraum
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Lineare Abbildungen" - Dimension Teilraum
Dimension Teilraum < Abbildungen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Dimension Teilraum: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:52 So 22.05.2011
Autor: BarneyS

Aufgabe
Welche Dimension hat der Teilraum des $ [mm] \IR^n [/mm] $, der aus den Lösungsvektoren $ x $ einer homogenen linearen Gleichung mit $ n $ Unbekannten besteht?

Hallo,

ich bin mir nicht ganz sicher, wie ich diese Aufgabe lösen soll. Erstmal ein paar Überlegungen:

Die Gleichung hat die Form: $ Ax=0 $

1. Fall: Die Matrix $ A $ ist quadratisch also $ n [mm] \times [/mm] n $

a) Es gibt nur die Triviale Lösung -> $ dim(T)=0 $

b) $ r(a) < n [mm] \Rightarrow [/mm] $ Es gibt unendlich viele Lösungen.

2. Fall: Die Matrix $ A $ ist eine $ m [mm] \times [/mm] n $ Matrix, mit $ m < n $, so gilt 1. b), da $ r(A) < n $ immer gilt.

3. Fall: $ m>n $
Hier müssten die gleichen Überlegungen, wie zu 1. a) und b) gelten?

Interessant ist eigentlich nur der Fall 1. b):

Ist $ n - r(A) = 1 $, so kann man einen Parameter des Lösungsvektors frei wählen. Die Menge aller Lösungsvektoren wären dann aber linear abhängig und die Dimension des Raumes mit den Lösungsvektoren als Basis wäre $ dim(T)=1 $.

Ist $ n - r(A) = 2 $, so sind 2 Parameter frei wählbar.

Die Dimension wäre folglich $ dim(T)=2 $.

Ich denke mal, dass die Dimension immer $ n - r(A) $ ist.

Aber wie kann man das beweisen, also mathematisch formal?

Vielen Dank :)


        
Bezug
Dimension Teilraum: Antwort
Status: (Antwort) fertig Status 
Datum: 18:02 So 22.05.2011
Autor: rainerS

Hallo!

> Welche Dimension hat der Teilraum des [mm]\IR^n [/mm], der aus den
> Lösungsvektoren [mm]x[/mm] einer homogenen linearen Gleichung mit [mm]n[/mm]
> Unbekannten besteht?
>  Hallo,
>  
> ich bin mir nicht ganz sicher, wie ich diese Aufgabe lösen
> soll. Erstmal ein paar Überlegungen:
>  
> Die Gleichung hat die Form: [mm]Ax=0[/mm]
>  
> 1. Fall: Die Matrix [mm]A[/mm] ist quadratisch also [mm]n \times n[/mm]

In der Aufgabe steht nicht Gleichungssystem. Es geht um nur eine Gleichung der Form

[mm] a_1x_1+\dots+a_nx_n=0 [/mm] .

Viele Grüße
   Rainer



Bezug
                
Bezug
Dimension Teilraum: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 07:51 Mo 23.05.2011
Autor: BarneyS

Cool, jetzt verstehe ich auch den Zusammenhang der beiden Aufgabenteile^^

Die Dimension müsste doch dann n-1 sein, richtig?

Bezug
                        
Bezug
Dimension Teilraum: Antwort
Status: (Antwort) fertig Status 
Datum: 08:25 Mo 23.05.2011
Autor: angela.h.b.


> Die Dimension müsste doch dann n-1 sein, richtig?

Ja.

Gruß v. Angela


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]