matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra SonstigesDimension, Multilinear
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Lineare Algebra Sonstiges" - Dimension, Multilinear
Dimension, Multilinear < Sonstiges < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Dimension, Multilinear: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:58 Sa 19.01.2013
Autor: theresetom

Aufgabe
Für endlich dimensionaler Vektorräume [mm] V_1 [/mm] ,.., [mm] V_n [/mm] zeige
[mm] dim(V_1 \times... \times V_n)= dim(V_1)+..+dim(V_n) [/mm]

Induktion nach i :
i=2
[mm] \alpha [/mm] : [mm] V_1 [/mm] x [mm] V_2 [/mm] -> [mm] V_1 [/mm] lin. Abbildung
[mm] (v_1 [/mm] , [mm] v_2) [/mm] -> [mm] v_1 [/mm]
Nach Dimensionssatz: [mm] dim(V_1 [/mm] x [mm] V_2 [/mm] )= [mm] dim(img(\alpha))+ dim(ker(\alpha)) [/mm]
[mm] img(\alpha)= V_1 [/mm]
[mm] ker(\alpha) [/mm] = [mm] (0,v_2) [/mm] Warum ist dann [mm] ker(\alpha) \cong V_2 [/mm] ???
Weil anders würde es nicht funktionieren????


I.Annahme: [mm] dim(V_1 [/mm] x... x [mm] V_n)= dim(V_1)+..+dim(V_n) [/mm]
I.Schritt:  [mm] \psi: (V_1 [/mm] x... x [mm] V_n [/mm] x [mm] V_{n+1}) [/mm] -> [mm] V_{n+1} [/mm]
[mm] dim(V_1 [/mm] x... x [mm] V_n [/mm] x [mm] V_{n+1}) =dim(img(\psi))+ dim(ker(\psi))= dim(V_{n+1})+ dim(V_1 [/mm] x... x [mm] V_n)= dim(V_{n+1})+ dim(V_1)+..+dim(V_n) [/mm]
wobei letzte Gleichheitszeichen die Induktionsvorrausetzung ist

-> http://www.matheboard.de/thread.php?threadid=512419

        
Bezug
Dimension, Multilinear: Antwort
Status: (Antwort) fertig Status 
Datum: 01:08 So 20.01.2013
Autor: Teufel

Hi!

Ok, also [mm] ker(\alpha)=\{(0,v)\in V_1 \times V_2|v\in V_2\}=\{0\} \times V_2. [/mm] Du kannst nun einen Isomorphismus von [mm] \{0\} \times V_2 [/mm] nach [mm] V_2 [/mm] angeben (oder meinetwegen auch umgekehrt). Was ist denn die einfachste Abbildung (außer der Nullabbildung), die dir einfällt zwischen diesen Vektorräumen? Zeige dann, dass diese ein Isomorphismus ist.

Bezug
                
Bezug
Dimension, Multilinear: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:36 So 20.01.2013
Autor: theresetom


> Du kannst nun einen Isomorphismus von $ [mm] \{0\} \times V_2 [/mm] $ nach $ [mm] V_2 [/mm] $ angeben (oder meinetwegen auch umgekehrt)

{0} [mm] \times V_2 [/mm] -> [mm] V_2, (0,v_2) [/mm] -> [mm] v_2 [/mm] Isomorphismus

LG

Bezug
                        
Bezug
Dimension, Multilinear: Antwort
Status: (Antwort) fertig Status 
Datum: 16:44 So 20.01.2013
Autor: fred97


> > Du kannst nun einen Isomorphismus von [mm]\{0\} \times V_2[/mm] nach
> [mm]V_2[/mm] angeben (oder meinetwegen auch umgekehrt)
>  
> {0} [mm]\times V_2[/mm] -> [mm]V_2, (0,v_2)[/mm] -> [mm]v_2[/mm] Isomorphismus

Ja

FRED

>  
> LG


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]