matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra - Moduln und VektorräumeDimension & Basis
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Lineare Algebra - Moduln und Vektorräume" - Dimension & Basis
Dimension & Basis < Moduln/Vektorraum < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Moduln und Vektorräume"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Dimension & Basis: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:33 Fr 26.01.2007
Autor: darwin

Aufgabe
Man bestimmme jeweils die Dimension und die Basis des Unterraumes. Aus welchen Elementen besteht [mm] U_1 \cap U_2? [/mm]

[mm] U_1 [/mm] = [mm] \{ \left( c,2c,d\right)^T | c,d \in \IR\} [/mm]
[mm] U_2 [/mm] = [mm] \{ \left( x_1 , x_2 , x_3 \right)^T | x_1 , x_2 , x_3 \in \IR \wedge x_1 +x_2 - x_3 = 0 \} [/mm]

Hallo zusammen.

Ich hätte da in beiden Fällen an die Kanonische Basis gedacht, doch bräucht ich dafür Koeffizienten aus [mm] \IR. [/mm] Kann ich davon ausgehen?
Sollte es so sein, dann ist aber auch [mm] B_1 [/mm] = [mm] \{ \left(1,2,0\right), \left(0,0,1\right) \} [/mm] eine Basis von [mm] U_1 [/mm] und das würde sich etwas auf die Dimension auswirken. Gemäß der mir vorliegenden Definition ist "die Dimension des Vektorraum V, die Mächtigkeit einer (beliebigen) Basis von V". Da ich dieser Definition glaube und denke, das die Dimension eindeutig bestimmt sein muss, kann eine Basis keine sein.

Kann mir jemand sagen welche Basis keine ist und warum?




        
Bezug
Dimension & Basis: Antwort
Status: (Antwort) fertig Status 
Datum: 17:41 Fr 26.01.2007
Autor: leduart

Hallo
> Man bestimmme jeweils die Dimension und die Basis des
> Unterraumes. Aus welchen Elementen besteht [mm]U_1 \cap U_2?[/mm]
>  
> [mm]U_1[/mm] = [mm]\{ \left( c,2c,d\right)^T | c,d \in \IR\}[/mm]
>  [mm]U_2[/mm] = [mm]\{ \left( x_1 , x_2 , x_3 \right)^T | x_1 , x_2 , x_3 \in \IR \wedge x_1 +x_2 - x_3 = 0 \}[/mm]
>  
> Hallo zusammen.
>  
> Ich hätte da in beiden Fällen an die Kanonische Basis
> gedacht, doch bräucht ich dafür Koeffizienten aus [mm]\IR.[/mm] Kann
> ich davon ausgehen?

Wieso denkst du ueberhaupt an die kanonosche Basis? liegt denn e1+5e2+e3 in U1, ei die kan. Basis? Wenn nicht, ist die kan. Basis auch keine fuer U1
Dasselbe Beispiel auch fuer U2 nachpruefen!

>  Sollte es so sein, dann ist aber auch [mm]B_1[/mm] = [mm]\{ \left(1,2,0\right), \left(0,0,1\right) \}[/mm]

Das ist wirklich ne Basis von U1, also hast du dim(U1)=2

> eine Basis von [mm]U_1[/mm] und das würde sich etwas auf die
> Dimension auswirken. Gemäß der mir vorliegenden Definition
> ist "die Dimension des Vektorraum V, die Mächtigkeit einer
> (beliebigen) Basis von V". Da ich dieser Definition glaube
> und denke, das die Dimension eindeutig bestimmt sein muss,
> kann eine Basis keine sein.
>  
> Kann mir jemand sagen welche Basis keine ist und warum?

Siehe oben!  

Gruss leduart  

Bezug
                
Bezug
Dimension & Basis: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:01 Fr 26.01.2007
Autor: darwin

Danke für die Antwort.

ich habe die erforderliche Abegschlossenheit nicht beachtet.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Moduln und Vektorräume"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]