matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Lineare AlgebraDimension
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Uni-Lineare Algebra" - Dimension
Dimension < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Dimension: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:25 Sa 25.11.2006
Autor: roadrunnerms

nur ma eine kleine verständisfrage:

wieso kann ich denn sagen dass:

falls U [mm] \subset [/mm] V ein endlich erzeugter unterraum ist
-> dim f(U) [mm] \le [/mm] dim (U)

also warum es = ist versteh ich ja, aber warum [mm] \le [/mm]

        
Bezug
Dimension: Antwort
Status: (Antwort) fertig Status 
Datum: 20:35 Sa 25.11.2006
Autor: SEcki


> falls U [mm]\subset[/mm] V ein endlich erzeugter unterraum ist
> -> dim f(U) [mm]\le[/mm] dim (U)
>  
> also warum es = ist versteh ich ja, aber warum [mm]\le[/mm]  

??? Also = ist doch i.a. falsch. Das folgt doch sofort daraus, das [m]f(U)\subset f(V)[/m] ist.

SEcki

Bezug
                
Bezug
Dimension: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:49 Sa 25.11.2006
Autor: roadrunnerms

warum is es jetzt:
falls U [mm]\subset[/mm] V ein endlich erzeugter unterraum ist
-> dim f(U) [mm]\le[/mm] dim (U)

ich würde es nämlich gern mal verstehn, warum ddie dimension des Bildes auch kleiner seien kann.


Bezug
                        
Bezug
Dimension: Antwort
Status: (Antwort) fertig Status 
Datum: 23:33 Sa 25.11.2006
Autor: SEcki


> ich würde es nämlich gern mal verstehn, warum ddie
> dimension des Bildes auch kleiner seien kann.

Mach was mit [m]U=\{0\}[/m] zB ...

SEcki

Bezug
                                
Bezug
Dimension: Rückfrage
Status: (Frage) beantwortet Status 
Datum: 11:33 So 26.11.2006
Autor: roadrunnerms

also ich verstehe, dass die dim U [mm] \le [/mm] dim V ist
=> müsste doch folgen, dass dim f(U) [mm] \le [/mm] dim f(V) oder??

aber ich komme nicht drauf, warum dim f(U) [mm] \le [/mm] dim U sein soll

weil dim V = dim (ker f) + rg f      dies ist ja die rangformel
und          =         dim f(V)   oder??
oder bezieht sich dim f(V) nur auf rg f , dann wars mir klar

U müsste ja dann analog sein

Bezug
                                        
Bezug
Dimension: Antwort
Status: (Antwort) fertig Status 
Datum: 11:44 So 26.11.2006
Autor: SEcki


> aber ich komme nicht drauf, warum dim f(U) [mm]\le[/mm] dim U sein
> soll

Hups, falsch gelesen. (Du solltest mal umbedingt den Formeleditior verwenden.)

Da f eingeschränkt auf U wieder linear ist, so kann man den Rangsatz anwenden. Daraus folgt das dann, auch das = nicht gelten muss - wähle ein geeignetes f.

SEcki

Bezug
                                                
Bezug
Dimension: rückfrage
Status: (Frage) beantwortet Status 
Datum: 11:55 So 26.11.2006
Autor: roadrunnerms

also ist      dim f(U)    nur der      rg f    ohnen die dimension vom kern
und deshalb kann          dim f(U) [mm] \le [/mm] dim U        sein

was für ein f könnt ich mir denn wählen, damit mir es klar wird??

also schonmal danke für deine hilfe

Bezug
                                                        
Bezug
Dimension: Antwort
Status: (Antwort) fertig Status 
Datum: 11:59 So 26.11.2006
Autor: Martin243

Hallo,

nimm doch z.B. $f: [mm] \IR^3 \rightarrow \IR^3, f(\vec{x}) [/mm] = [mm] A\vec{x}$ [/mm] mit:
$A = [mm] \pmat{1 & 0 & 0\\0 & 1 & 0\\0 & 0 & 0}$. [/mm]

Hier lassen sich Kern und Bild sowie ihre Dimesnionen leicht berechnen.


Gruß
Martin

Bezug
                                        
Bezug
Dimension: Antwort
Status: (Antwort) fertig Status 
Datum: 11:55 So 26.11.2006
Autor: Martin243

Hallo,

unsere Rangformel hieß "Dimensionsformel für lineare Abildungen" und lautete:
[mm] $\dim [/mm] U = [mm] \dim [/mm] Kern(f) + [mm] \dim [/mm] Bild(f)$

Wir haben zwischen einer Matrix und der durch sie induzierten Abbildung unterschieden, so dass wir auch nie den Rang von f, sondern nur die Dimension des Bildes von f berechnet haben.
Es ist tatsächlich $f(U) = Bild(f)$.


Gruß
Martin

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]